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Abstract. Learned Sparse Retrieval (LSR) has traditionally focused on
small-scale encoder-only transformer architectures. With the advent of
large-scale pre-trained language models, their capability to generate sparse
representations for retrieval tasks across different transformer-based ar-
chitectures, including encoder-only, decoder-only, and encoder-decoder
models, remains largely unexplored. This study investigates the effective-
ness of LSR across these architectures, exploring various sparse repre-
sentation heads and model scales. Our results highlight the limitations
of using large language models to create effective sparse representations
in zero-shot settings, identifying challenges such as inappropriate term
expansions and reduced performance due to the lack of expansion. We
find that the encoder-decoder architecture with multi-tokens decoding ap-
proach achieves the best performance among the three backbones. While
the decoder-only model performs worse than the encoder-only model, it
demonstrates the potential to outperform when scaled to a high number
of parameters.

Keywords: Learned Sparse Retrieval - LLMs - Information Retrieval.

1 Introduction

Modern LLMs are knowledgeable about a wide range of topics and have achieved
remarkable performance in their application to information retrieval [T728130].
However, much of the research has focused on using LLMs to generate dense
vectors rather than sparse ones [I7/I8]. Learned sparse retrieval (LSR) utilizes
LLMs to encode queries and documents into lexical sparse vectors, i.e. vectors
where most of the elements are zero. Compared to dense retrieval, LSR’s lexical
representations are more interpretable as each output dimension is aligned with
a term in a vocabulary. In addition, LSR relies on an inverted index for retrieval,
which is smaller in size than a vector index (e.g., HNSW [21]) employed by
dense retrieval. Recent studies have demonstrated that LSRs could efficiently
achieve strong first-stage retrieval performance [I5/4]. Its effectiveness, efficiency
and transparency make LSR a compelling alternative to dense retrieval in many
information retrieval applications.

* Corresponding author
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Query: what is paula deen's brother (qid: 1048585)

Tokens predicted by fine-tuned FlanT5-base

Overlap
De, de, Dean, Leader, actor, a,
son, was, Pa, ul, name, character, | el De, de, pa, P, cousin, her,
married, is, la, relationship, who | - HelEE i El D, Pe, Pa, de, first, baby,
mother, his, origin, member, boy, a, sister, father, friend, child Patrick, da, Le
boyfriend, daughter, partner

Tokens missed by zero-shot FlanT5-x|

sister, brothers, Pe, is, Brother, D, Paul, boy, child, son, Patrick, leader, partner, boyfriend, relationship, father, her,
mother, de, la, Pa, De, cousin, actor, baby, Le, his, family, pa, first, ul, name, origin, da, friend, daughter, married,
‘was, member, P, who, character, Dean

Fig.1: Output Bags of Tokens Produced by Different Sparse Representation
Heads; Zero-shot encoder (FlanT5-x1) misses many important expansion terms.
The MLM-MultiTokens head captures more relevant tokens than the MLM-
SingleToken head by gathering contextual information from all input token rather
than a single token.

When evaluating the capabilities of LLMs for sparse retrieval, a key question
is whether they can generate effective sparse representations in zero-shot settings.
Our analysis shows that while LLMs excel in many generative tasks, they struggle
with zero-shot sparse retrieval. As illustrated in Figure [T} which shows the tokens
predicted by different sparse representation heads with a zero shot or fine-tuned
model, LLMs not only fail to expand the input text to include semantically
relevant terms, but they often introduce noise, leading to semantic drift and poor
retrieval performance. This limitation highlights the need for supervised training
to enhance LLMs’ effectiveness and raises the question of whether fine-tuning
could enable LLMs to outperform smaller-scale learned sparse retrieval (LSR)
methods.

Previous research on LSR has predominantly focused on small-scale encoder-
only transformer architectures [2[T2/T92734]. For instance, Splade [12], a state-
of-the-art LSR model, is built upon Cocondenser [I3], which utilizes a BERT-base
architecture with 110M parameters, specifically pre-trained for Information Re-
trieval (IR) tasks. The generalizability of LSR to other transformer architectures,
such as decoder-only and encoder-decoder, remains unclear, as does its scalability
concerning model size. Decoders are trained to sequentially generate a subsequent
token based on the given input text and previously generated tokens. This is
different from sparse representation learning which requires weighting existing
tokens within the input and expanding them with contextually relevant terms.
To learn a sparse representation from the decoder output, we investigate using a
multi-tokens decoding approach. This adaptation allows the decoder to work more
like an encoder, making better use of the parameters within the decoder module.
Our results indicate that the multi-tokens decoding approach for encoder-decoder
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Fig. 2: Learned sparse retrieval architectures consist of (1) a transformer backbone
that takes query or document text as input and outputs hidden state(s) and (2)
a sparse representation head that takes the hidden state(s) as input and outputs
sparse lexical representations.

models helps to effectively utilize the parameters in both encoder and decoder
modules.

This paper aims to address these gaps by investigating LSR across different
transformer architectures (encoder-only, decoder-only, and encoder-decoder) at
several scales and exploring the capabilities of LLMs under zero-shot and fined-
tuning settings. Our findings are as follows: (1) Without fine-tuning, LLMs
struggle to generate meaningful sparse representations due to inappropriate
term expansions; (2) the ability of decoder-only architectures to produce sparse
representations is limited and comparable results to encoder-only models are only
achieved when the model is scaled to a large size, such as 3 billion parameters; (3)
by copying the encoder’s input to the decoder we enable the encoder-decoder to
perform multi-tokens decoding effectively aggregating lexical information across
the input sequence and creating a significantly more effective sparse representation
compared to the single-token approach; and (4) encoder-decoder architectures
with multi-tokens decoding can outperform encoder-only and decoder—onlyﬂ

2 LSR Architectures

In LSR, queries and passages are encoded into sparse representations over terms
(Figure. In this section, we describe how to generate sparse representations from

3 Code: https://github.com/JingfenQiao/Decoder4L.SR
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various transformer-based architectures, including encoder-only, decoder-only,
and encoder-decoder.

2.1 Transformer Backbones

Given a sequence of n tokens (¢,ts,...,t,) in the query or passage, the task of
a LSR model is to predict term weights based on the hidden states output by
the transformer-based backbone. Therefore, the transformer backbone aims to
transform each input token ¢; into a hidden state (latent vector) h;. A sparse
representation of the input is then produced by passing these hidden states to
a sparse representation head. In this section, we first describe how the hidden
states h; are produced by encoder-only backbone in the previous research, and
then illustrate how to leverage decoders to construct sparse representations.

We will use the following notation to describe each transformer-based back-
bone in this paper: @ denotes the concatenation operator, hy., denotes the hidden
states corresponding to input tokens t¢1., that are produced by a transformer-
backbone, v; and e; represents the iy, token and transformer’s initial input
embedding in the model vocabulary |V, where ¢ € {0,...,|V]| —1}.

Encoder-only (Enc.): When using a transformer encoder stack as the backbone,
we feed text directly into the encoder, which produces a contextualized embedding
of each input term. We refer to these as hidden states h; for consistency with the
decoder-based backbone that we introduce in this paper.

hi.» = Encoder(t1,t2,...,tn) (1)

When using an encoder backbone, the hidden states are produced using bi-
directional attention that considers terms both before and after a given term
t; when producing hidden states to represent the input sequence. This is an
intuitive property for the transformer backbone to have. With the exception
of the zero-shot PromptRep model [37] and orthogonal document expansion
approaches like doc2query [26], all existing learned sparse retrieval models use
backbones based on a transformer encoder [23].

Decoder-only with multi-tokens (Dec. MultiTokens): In contrast to en-
coder models, decoders are designed with causal attention, where the generation
of a hidden state h; depends only on the previously generated tokens, and the
decoder starts with the start symbol of a model <s>. We concatenate the start
symbol of the model <s> in front of the token ¢;.

hi.n = Decoder(<s>,t1,t2,...,tn) (2)

When using decoder-based backbones, rather than invoking the decoder
repeatedly for each token, we feed the entire input text to the decoder in a
single pass to generate sparse representations. This contrasts with the typical
token-by-token decoding approach, where a new hidden state is produced at
each decoding step. As illustrated in Figure 7?7, the row-wise pooling of MLM
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outputs demonstrates how the hidden state of every token contributes to the
final multi-token representation.

Encoder-Decoder with single-token (EncDec. SingleToken): In encoder-
decoder with single-token, similar to the Sentence-T5 embedding model [24],
input text is fed into the encoder and only the start token <s> is fed into the
decoder. Therefore, it only yields a single latent vector hy that is derived from
the hidden state of the input token <s>, which is in turn derived from the hidden
states of the entire input text produced by the encoder stack.

Toy = Encoder (1, t2, ..., tn) (3)

hi = Decoder(h{ly @ e<s>)nt1 (4)

Encoder-Decoder with multi-tokens (EncDec. MultiTokens): We hy-
pothesize that the output representation of the encoder-decoder architecture is
bottlenecked by the single decoder input, the start token <s>, which limits the
model’s ability to aggregate lexical information from the entire input sequence.
To overcome this bottleneck, we propose a multi-tokens decoding approach that
allows the model to gather information from any input token. As shown in
Figure 77, the Encoder-Decoder with multi-tokens model receives full input text
both in the encoder and decoder, and the decoder’s input is prepended with the
start token.

T = Encoder(t1,t2,...,t,) (5)

hi.n = Decoder(hily @ ecs> B t1,ta, ..., tn) (6)

2.2 Sparse Representation Heads

A sparse representation head takes a hidden state produced by the transformer
backbone as input and produces one or more term weightsﬁ These term weights
are then aggregated to produce a sparse representation of the entire input text,
which can then be used for retrieval by taking the dot product of a query repre-
sentation and a document representation. More formally, a sparse representation
head takes a sequence of of n hidden states output by a transformer backbone
hin = (h1,ha, ..., hy,) as input. The head outputs a sparse vector with |V|
dimensions where v; corresponds to a term ¢; in the vocabulary.

MLP head: The MLP head, used in models like DeepCT [I4], uniCOIL [16]
and Deeplmpact [22], uses a multi-layer perceptron to process contextualized
embeddings for each input term in the query or passage. It assigns non-zero
weights to terms that occur only in the input text. The importance M LP(h);
of each term v; within a model vocabulary V for a given input ¢,, is defined by
Equation[7] where W and b are the weight and bias of the linear head, respectively.

* Nguyen et al. [23] refer to these as sparse encoders. We use the term head instead to
avoid overloading the term encoder, which can also refer to the type of transformer
backbone used.
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1(v; = t,,) ensures to that only tokens in the input receive weights, the other
terms are zero.

MLP(hl;n)i = zn: log (1(1)7; = tj) . ReLU(th + b) + 1) (7)

j=1

MLM head: In contrast to the MLP head, the MLM head expands the
input (using the model’s vocabulary) in addition to weighting tokens. MLM heads
have been used in models such as SPLADE [12], Sparta [36], and TILDE [3§].
The MLM head uses the logits value produced by the language model head for
each input term v; to produce a sparse representation. It can assign a weight to
to any terms in the model vocabulary V regardless of whether it appears in the
input text, thereby exploiting the language model’s capability to expand and
weight terms. The importance M LM (hy.,); of each term v; within a model’s
vocabulary V' is aggregated from the logits matrix along the input sequence, as
defined in Equation [§f The MLM-SingleToken (MLM-ST) process a single hidden
state hy from the transformer backbone to determine the importance of each
term in the vocabulary, while MLM-MultiTokens (MLM-MT) processes multiple
hidden states hi., and takes the max weight over the different hidden states.

MLM (h1.0); = b log (1 4 ReLu (thei n b)) (8)

The ReLu activation function and logarithmic normalization are applied to
ensure the positive of term weights [12] and prevent some terms from dominating
in the sparse representation [10]. The max-pooling operator in Equation [§]is to
aggregate term importance weights into a document-level sparse representation.
Formal et al., [I2] found that max pooling is more effective than sum pooling.
Therefore, we employed max-pooling for all MLM models.

3 Experimental Setup

In this section, we outline the experimental design, including the models, training
configurations, and evaluation methods, to investigate learned sparse retrieval
(LSR) performance across various transformer architectures.

Retrieval and Indexing: We apply the same architecture type with shared
weights for both the query and document encoders. For indexing and retrieval,
we use the Anserini toolkit [3233] to index the encoded documents and retrieve
with the encoded queries.

Dataset and Evaluation: We trained our models on the MS MARCO
passage dataset [3], which includes 8.8 million passages and 40 million training
triplets. All models are trained on those triplets and hard negatives generated by
the cross-encoder teacher model in [I4]. We report the MRR@10, NDCG@10 and
Recall@1000 of all models on the MS MARCO Dev and TREC Deep Learning
(TREC-DL) 2019/2020 [6/7]. In addition of the effectiveness metrics, we report
the FLOPs metric (the average number of term overlap between a pair of query
and document) as a proxy of efficiency.
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Backbones and baselines We selected three different pretrained trans-
former language model as the backbone of our study, including encoder-only
(Distilbert-base-uncased [29]), decoder-only (OPT [35]) and encoder-decoder
(T5 [5]). Distilbert-base-uncased is widely recognized and extensively employed
within the LSR literature [9I2JTI5]. The OPT [35] and Flan-T5 [5] offers a wide
range of parameter sizes. This variability enables us to explore how decoder-only
architectures scale and perform in generating sparse representations, providing
insights into their effectiveness across different model sizes. In terms of baselines,
we select based on query expansion and term weighting strategies and compare
against the unsupervised sparse model BM25 and the supervised sparse model,
including EPIC [20], DeepCT [8], DocT5Query [26], DeepImpact [22], Splade-
max [12] and DistilSplade-max [12]. The unsupervised sparse baseline BM25
employs neither expansion nor supervised weighting. Supervised LSR baselines
include EPIC [20] and DeepCT [8], which use supervised weighting without query
expansion; DocT5Query [26], which focuses solely on document term expansion
without term weighting; DeepImpact [22], which applies supervised term weight-
ing without query expansion; and Splade-max [I2] and DistilSplade-max [12],
which integrate both supervised query expansion and term weighting.

Training Configuration All models were fine-tuned using the ADAM
optimizer with 6000 warmup steps. The batch size for all models was consistently
maintained at 16. Due to model nuances, the OPT model uses a lower learning
rate of 1¢79 while Flan-T5 uses 5°~%. We used one NVIDIA A6000 GPU with
48GB memory to train medium-sized models, such as Flan-T5-base, and OPT-
3.5. Larger models (OPT-1.3B, OPT-2.7B, Flan-T5-large and Flan-T5-x1) were
trained on four A6000 GPUs. Following the setting of Splade [12], we schedule
the regularization weight A to increase quadratically over the first 100k steps and
we tried different values of \ ranging from 17! to 17%.

4 Optimization

Knowledge distillation has emerged as a highly effective strategy for transferring
knowledge from a high-performing cross-encoder to a more efficient bi-encoder in
information retrieval tasks [I2JI5/14]. By training the student model to replicate
the teacher’s score distribution, the student preserves a significant portion of the
teacher’s ranking ability. Compared to alternative approaches for retrieval, such as
contrastive learning or reinforcement learning, the knowledge distillation inherits
a well-calibrated signal from a strong teacher model, thus reducing the need
for labor intensive training sample construction or careful reward engineering.
Concretely, given a batch B of training triplets g;, Pi+, P consisting of a query
qi, a positive document Pf and a negative document P, , we compute the margin
between the positive and negative documents for both teacher and student. We
then minimize the mean squared error (MSE) of the difference between these
margins, as shown in Equation [9]
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1 . .
£MarginMSE = 5 Z (AM; - AMZ)Q (9)
|B| i={0,...,|B|—1}

where AM? = S(q;, P;") — S(qi, P;”) and AM] = T(q;, P;*) — T(g:, P;) are
the respective margin scores of the student S and teacher model 7" on the i-
th triplet, and |B| is the batch size. Following [I4/12], we use MarginMSE as
the distillation loss to ensure fair comparisons and reduce confounding factors.
Although a more complex training setup (e.g. using an ensemble of multiple
teachers, dual MarginMSE and KL-Div loss, continuous training as in Splade-
V3 [15]) could be applied to increase the overall effectiveness, we believe that our
relative findings between different architectures and approaches do not change.

Distillation Training Data To investigate how the scaling of teacher
models affects performance, we experiment with two teachers: MiniLM-L-6-
v2 [31] and Rankllama-13B [I7]. Rankllama-13B outperforms MiniLM-L-6-v2 on
the MSMARCO training set, as shown in Table [5|in Appendix. For both teacher
models, we collect hard negatives from multiple retrieval systems (including
dense retrieval models and BM25) to provide challenging negative samples. Each
teacher then generates score pairs for the query-positive and query-hard-negative
pairs using the hard negatives from Sentence—Transformer We use the smaller
teacher’s scores from [I1] directly, whereas we generate the Rankllama-13B scores
ourselvef®] We observe that Rankllama-13B produces a relatively narrow score
distribution (Appendix Table|3)), which may make it more difficult for students to
learn effectively. This aligns with findings by [I5], who show that the MarginMSE-
based distillation process is sensitive to score distributions. To address this, we
apply a affine transformation to flatten Rankllama-13B’s scores, ensuring that
its mean and standard deviation more closely match those of MiniLM-L-6-v2.

Sparsity Regularization Finally, to encourage sparsity in the learned rep-
resentations, we adopt FLOPs regularization [27] and activation functions [I] to
facilitate the learning of distributed sparse embeddings. FLOPs are a differen-
tiable relaxed approximation of the number of floating-point operations(FLOPs)
to compute the score between query and document. Formally, our overall objective
is defined in Equation

Cranking = ['MarginMSE + chg"eg + Adcfeg (10)

where L1, and £feg denote FLOPs-based regularization terms for query
and document representations, respectively, and A, and A4 are their weighting

coefficients.

® https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives
S https://huggingface.co/datasets/lsr42 /rankllama-ms-marco-scores
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Table 1: Comparison of sparse retrieval without fine-tuning on MS MARCO dev.
x results are from [22]; A 1 indicates paired t-test p < 0.05. (f indicates test
between term expansion and non-expansion.

Model Weighting Expansion RR@10 R@1k
Sparse retrieval
(1) BM25* Yes No 18.8 85.8
(2) BM25+Doc2Query* Yes Yes 278 947
Learned sparse retrieval (zero-shot)
(3) EncDec.MultiTokensgants.x1 Yes Yes 1.30 16.5
(4) EncDec.MultiTokensgianTs 1 Yes No 3.67F 34.0f
(5) Dec.MultiTokensopr.2.78 Yes No 13.7 714
(6) Dec.MultiTokensopr.6.78 Yes No 12.5 70.5

5 Results and Discussion

RQ1: Can LLMs effectively generate sparse representations in a zero-
shot setting when prompted?
Term weighting and expansion are key factors in the effectiveness of sparse
retrieval systems [16]. We evaluate LLMs for sparse vector creation with and
without term expansion. Recently, Zhuang et al. [37] proposed generating sparse
and dense representations by prompting LLMs, using the logits of the last token
in the input sequence. Their method only assigns weights to tokens present in
the input, without term expansion. To investigate LLM’s term expansion ability,
we compare sparse vectors with and without expansion. In the expansion case,
we keep the top 1,000 tokens, while the non-expansion approach uses only tokens
from the input text. Instead of relying on the last token’s logits, our method
aggregates logits from all input tokens, following Equation

Table [1] shows the zero-shot performance of LLMs versus traditional meth-
ods like BM25 and BM25+Doc2Query. All zero-shot models use the MLM-
MultiTokens head for aggregating term weights. We find that enabling term
expansion in Flan-T5-x1 leads to a significant drop in Recall@lk (34.0 to 16.5),
as noisy terms like 'ray,” ’s,” and 'mil’ receive high weights, harming performance.
OPT-2.7B achieves the best results among LLMs (MRR 13.7, Recall@1k 71.4)
but still falls short of BM25 and state-of-the-art LSR models, highlighting the
need for fine-tuning to improve term importance assessment in LSR. Addition-
ally, we assessed their effectiveness across various model sizes to provide a more
comprehensive comparison, as shown in Table [6] in the Appendix.

RQ2: Can encoder-decoder or decoder-only backbones outperform
encoder-only backbones when using multi-tokens decoding approach?
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Table 2: Evaluation of different transformer backbones on MS MARCO passage
(dev set) and TREC DL 2019/2020. All models are trained with 600k steps and
use the MLM-MultiTokens head for both query and document encoding. * indicates
reproduced results.

DL2020 DL2019 MS MARCO dev
Models Backbones FLOPs nDCG@10 nDCG@10 nDCG@10 R@1k RR@10
(1) Splade-max* [12] Encoder-only 1.3 67.0 68.0 40.2 96.5  34.0
(2) DistilSplade-max* [12] Encoder-only 4.0 67.9 71.0 43.3 97.9  36.8
(3) Enc.FlanTs-base Encoder-only 16.0 61.0 65.0 36.0 96.9 29.8
(4) Dec.MultiTokensgianTs-base Decoder-only 2.3 67.4 68.7 39.9 97.1 33.6
(5) Dec.MultiTokensopr-350m Decoder-only 4.9 68.6 66.4 39.8 97.2 33.7
(6) EncDec.MultiTokensgiants-base Encoder-Decoder 2.8 70.5 71.4 43.6 98.3 36.8

Encoder-only VS Encoder-decoder backbone The encoder-decoder
backbone generally surpasses the encoder-only backbone, as shown in Table [2]
Specifically, EncDec.MultiTokens (row 6) outperforms the encoder-only model
DistilSplade-max (row 2) in NDCG@10 on the MS MARCO development set, with
lower FLOPs (4 vs. 2.8) using the same training configuration. Upon inspection,
we find that the encoder-decoder model is more effective at expanding the
input queries and documents to relevant terms. The encoder-decoder architecture
benefits from a hybrid attention mechanism, which includes bidirectional attention
in the encoder and causal attention in the decoder. This allows it to identify
different patterns of semantic dependency in the input. Interestingly, the encoder-
only model using Flan-T5 (Enc.gjanTs-base) performs significantly worse than the
encoder-only model DistilSplade-max, especially on the MRR@10 and nDCG@10
metrics. This underperformance may be attributed to the fact that Flan-T5 was
pre-trained with an encoder-decoder architecture, where the MLM head is only
attached to the decoder’s hidden states during training. When we attach the
same MLM head to the encoder, there may be an incompatibility that makes
LSR training more challenging.

Decoder-only backbone effectiveness We trained different LSR variants
using the Flan-T5-base (248 million parameters) and OPT-350M (350 million
parameters) decoder-only checkpoints. Among all the backbone variations (rows
3, 4, and 6) of Flan-T5-base, the decoder-only variant (row 4) was the second
most effective, trailing only behind the encoder-decoder architecture (row 6).
Furthermore, compared to DistilSplade-max (row 2), which is built on the BERT
encoder, the decoder-only model using the OPT-350M checkpoint (row 5) shows a
slight improvement in terms of NDCG@10 and MRR@10 metrics on the DL2020
dataset, but not on MS MARCO and DL2019. Additional insight could also be
seen on Table [d] where we observe that the effectiveness of the Decoder-only
model (row 8) can exceed Enc. (row 1) on DL2020, DL2019 and MS MARCO
when the parameters are scaled to 1.3 billion.
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Table 3: Performance of different Sparse Representation Heads on MS MARCO
passage (dev) and TREC DL 2019,/2020. All models are trained with 600k steps.
* indicates reproduced results; x results are from the work in [22]; x x results
are from the work in [23]; A 1 indicates paired t-test p < 0.05. (1 indicates test
between MLM-MT and MLM-ST); A 1 indicates paired t-test p < 0.01( 1 indicates
test between models where both query and passage use MLM-MT and models
where either query or passage use MLM-MT)

DL2020 DL2019 MS MARCO dev

Models Query Passage FLOPsnDCG@10nDCG@10nDCG@10 R@1k RR@10
(1) BM25* - 48.7 49.7 23.5 85.8 18.8
(2) EPIC} 00 21 MLP  MLM-MT- 718 709 - 972 372
(3) DeepCT*g MLP MLP - 55.0 57.8 29.8 91.0 244
(4) DocTHQuery ™ ] - - - 61.9 64.8 33.8 94.7 278
(5) DeepImpact ™z BINARY expMLP - 65.1 69.5 38.5 94.8  32.6
(6) Splade-max*[z] MLM-MT MLM-MT 1.3 67.0 68.0 40.2 96.5  34.0
(7) DistilSplade-max*[z] MLM-MT MLM-MT 4.0 67.9 71.0 43.3 979  36.8
(8) EncDec. MultiTokenspiarsbae MLP  MLM-MT 1.3 53.6¢ 56.6¢ a7 o976 353
(9) EncDec. MultiTokensprs e MLM-MTMLP 3.3 50.61 48.11 3130 959" 258!
(10) EncDec.SingleTokengiants-pase MLM-ST MLM-ST 2.5 54.5 59.7 36.1 95.0 304
(11) EncDec.MultiTokenspiars.pase MLM-MT MLM-MT 2.8 70.51 71.41 4361 98.31 368!

RQ3: Which sparse representation head is better for creating a
sparse representation?

MLM-MultiTokens (MLM-MT) vs. MLM-SingleToken (MLM-ST)
We evaluate the MLM-MultiTokens and MLM-SingleToken heads on the best-
performing encoder-decoder model using the Flan-T5 base checkpoint. As shown
in Table [3} the MLM-MultiTokens head outperforms the MLM-SingleToken head
across all evaluated metrics and datasets (MS MARCO, DL2019, DL2020). This
suggests that the MLM-MultiTokens head, which aggregates latent vectors from
multiple input tokens, facilitates more effective sparse representations compared
to the single token approach from the decoder output.

MLM-MultiTokens vs. MLP We also compare the performance of the
MLP and MLM-MultiTokens heads derived from the decoder output using the
Flan-T5-base checkpoint. The results in Table [3| show that encoding both the
query and document with the MLM-MultiTokens head achieves the highest ef-
fectiveness, significantly outperforming the MLP head, particularly in terms of
nDCG@10 across different datasets. This contrasts with the results observed
on an encoder-only backbone, where switching the query encoder from MLM-
MultiTokens to MLP—reproduced using hard negative distillation labels in the
study by [23]—did not yield a significant improvement. These findings suggest
that MLM-MultiTokens head query expansion is more beneficial for encoder-
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Table 4: Impact of scaling student and teacher model. All models are trained with
600k steps and use the MLM-MultiTokens head for both querying and document
encoding. A t 1 indicates a paired t-test p < 0.05. (T indicates a test between
models tuned with the teacher MiniLM-L-6-v2 and Rankllama-13b. 1 indicates
between smaller student and larger student LSR model with same backbones)

DL2020 DL2019 MS MARCO dev

Models nDCG@10 nDCG@10 RR@10 FLOPs

(1) Enc.pistilbert-base-uncased 67.9 71.0 36.8 4.0

(2) EncDec.MultiTokensgianTs-base 70.5 71.4 36.8 2.8

(3) Dec.MultiTokensopr.-350M 68.6 66.4 33.7 4.9
Scaling Teacher

(4) Enc~Distilbert-base-uncased 731T 751T 37.3 5.8

(5) EncDec.MultiTokensgianTs-base 70.1 73.4 37.8 5.2

(6) Dec.MultiTokensopr-350M 61 66.8 32.8 5.1
Scaling Student

(7) EncDec.MultiTokensgianTs-large 70.7 73.3 37.8 3.8

(8) Dec.MultiTokensopr-1.38 69.5 73.1% 36.9% 4.8

decoder backbones compared to encoder-only backbones.

RQ4: How is the performance of the LSR affected by scaling the
teacher and student models on the different backbones?

Table [4 illustrates the impact of scaling teacher and student models across
different backbones, including Encoder-only, Encoder-decoder, and Decoder-only.

Impact of scaling teacher model To assess the impact of scaling the
teacher model on different backbones, we employed a more effective cross-encoder
RankLLaMA-13B [I7] as the teacher to supervise LSR model (student) tuning.
Row 4-6 shows the effect of using a larger teacher model across different back-
bones. Consistent with findings by [15], the encoder-only model shows significant
improvements when scaling the teacher model, increasing from 67.9 to 73.1 on
DL2020 and from 71.0 to 75.1 on DL2019. The encoder-decoder backbone also
exhibits improvements on DL2019 and MS MARCO, though to a lesser degree.
In contrast, the decoder-only model experiences a decline in performance on MS
MARCO and DL2020. This decline may be attributed to the sharp distribution
of RankLlama teacher model scores, as shown in Figure [3] The sharp distribution
makes it challenging for the decoder-only architecture to generate a sparse vector
by relying solely on FLOPs regulation in the loss function. Further investigation
is needed to fully understand this behavior. Overall, these results suggest that
scaling the teacher model generally enhances the performance of encoder-only
and encoder-decoder models.
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Impact of scaling student model Row 7-8 of Table [ illustrates the impact
of scaling the student model on the performance of learned sparse retrieval (LSR).
Both encoder-decoder and decoder-only backbones showed improvements as
the student model parameters were scaled. Specifically, the nDCG@10 of the
encoder-decoder backbone increased to 70.7 on DL2020 and 73.3 on DL2019,
while the MRR@10 rose to 37.8 on MS MARCO. Similarly, the nDCG@10 of
the decoder-only backbone increased to 60.9 on DL2020 and 73.1 on DL2019,
with the MRR@10 rising to 36.9 on MS MARCO. Notably, the improvement
observed for decoder-only backbones was significantly larger when scaling the
student model compared to scaling the teacher model.

6 Related Work

6.1 Dense Retrieval

Dense retrieval encode queries and documents into latent dense representations.
Early work on dense retrieval models used encoder transformers, but more recent
efforts have been exploring other transformer architectures. Sentence T5 [24]
compares different transformer architectures (encoder-decoder, encoder-only,
decoder-only) for dense sentence embeddings and finds that the encoder-decoder
architecture achieves the best performance on semantic textual similarity (STS)
benchmarks. Ni et al. [25] later extend Sentence T5 (encoder-only) for retrieval
tasks and study its effectiveness on different model scales (base, large, XL, XXL).
The study suggests that scaling up the T5-encoder could improve the out-of-
domain generalizability of dense retrieval. Similarly, Ma et al. [I7] developed
RepLlama based on Llama—a billion-scale decoder-only language model-—and
demonstrated the strong in-domain and out-of-domain performance of this model.

6.2 Learned Sparse Representations

Learned sparse retrieval offers an efficient alternative to dense retrieval by ef-
fectively utilizing traditional inverted indexes, which combines the capabilities
of neural methods with the efficiency of classical indexing method. DeepCT [§]
and uniCOIL [I6] use BERT-based model to learn the importance of terms in
query and passage. Although they do improve the weighting of terms compared
to unsupervised approaches such as BM25, they only weight those terms that are
already present in the document, hence lacking term expansions. Therefore, their
effectiveness could be limited due to the term mismatch issue. To overcome this
term mismatch problem, Mallia et al [22] improve effectiveness by enriching doc-
uments with predicted queries from DocT5Query and proposes a term weighting
model that calculates the pairwise loss between relevant and nonrelevant texts
with respect to a query. In another approach, Splade [12] directly utilizes language
model logits to weight and expand terms in an end-to-end fashion. MacAvaney et
al. [20] previously proposed EPIC, which has a similar architecture to Splade but
with an MLP query encoder that does not perform query expansion. In a later
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study, Nguyen et al. [23] found that under state-of-the-art training configurations,
EPIC, without query expansion capability, can be as effective as Splade while
being more efficient. This finding is also confirmed by a recent Splade-v3 [15]
technical report. Unlike dense retrieval, Most of the previous LSR methods has
predominantly focused on using small-scale encoder-only transformer models
(e.g., DistilBERT, BERT). A concurrent work [9] uses 7 billion model Mistral
as the backbone to develop a learned sparse retriever trained on extensive data.
To ensure fair comparisons and avoid confounding factors, our study uses the
same training data with Splade-DistillMax [I5]. We address the aforementioned
gap in the literature by investigating the performance of LSR across a range
of transformer-based architectures, including encoder-only, decoder-only, and
encoder-decoder models, as well as larger model scales.

7 Conclusion

Our work explored the utility of different transformer-based backbones for LSR.
We highlight the difficulty of creating effective sparse representations using
LLMs in zero-shot settings. Doing so leads to either the wrong type of term
expansion or to a reduction in performance due to an inability to expand. The
contribution of our work is to propose a solution for creating sparse representation
from the decoder output and investigate the LSR effectiveness across different
backbones for LSR. Our results indicate that incorporating the multi-tokens
decoding approach helps to create a more effective sparse representation for the
encoder-decoder and decoder-only backbone.
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Appendix

Table 5: Teacher performance comparison on the MS MARCO training set.

nDCG@10 RR@10

MiniLM-L-6-v2
Rankllama-13B

44.3 37.5
47.5 40.3

[ MinilM-L-6-v2
0.20 @3 RankLlama-13B

=10 =5 0 5 10
Relevance Score

(a) Score distributions of MiniLM-L-6-v2 (b) RankLLama-13B scores before and after

and RankLLama-13B.

affine transformation.

=3 Before AF

Relevance Score

Fig. 3: Score distributions of the two teacher models on the MS MARCO training
set. (a) RankLLama-13B exhibits a sharper distribution than MiniLM-L-6-v2.
(b) We apply an affine transformation to align the mean and standard deviation

distribution of RankLama-13B with that of MiniLM-L-6-v2.

Table 6: Comparison of LSR effectiveness across different backbones without
fine-tuning on MS MARCO dev. x results are from [22]; A T indicates paired
t-test p < 0.05. (f indicates test between term expansion and non-expansion.

Model

Weighting Expansion RR@10 R@1k

Enc~Distilbert—base—uncased

1)

2)

3) EncDec.MultiTokensgianTs-x1
4) Dec.MultiTokensopr-350M

5) Dec.MultiTokenstT_2_7B

6) Dec.MultiTokensopr.6.78

Yes

EncDec.MultiTokensgianTs base Y€S

Yes
Yes
Yes
Yes

No

0.930 40.4
0 0
3.677 34.0f
13.2  50.9
13.7 714
12.5 70.5
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