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Abstract. Questions in conversations can be highly informal, with the
user intent becoming clear only with prior context. This is challenging
when the conversation involves long-tail entities. Prior works addressed
these issues with computationally expensive techniques; this work aims
to improve efficiency while being competitive in effectiveness. To this end,
we devise techniques to efficiently compute relatedness scores between
questions and entity mentions in previous turns, and select a few mentions
for question expansion. Answers are computed by a ranking pipeline,
with candidate subsets of decreasing size as later stages incur higher cost.
Experiments with two benchmarks show that our method outperforms
all baselines on both efficiency and effectiveness.

1 Introduction

Motivation. Conversational IR (CIR) gives answers to questions in a multi-turn
session [39]. Here, it is crucial to combine questions with context cues from
previous turns. Questions can be about emerging entities, which may not exist in
Wikipedia. A system answer would be an informative passage from news articles.

Consider the conversation on the left side of Figure 1; the example illustrates
two problems. First, follow-up questions Q2 through Q4 are all but self-contained,
and need to be contextualized with previous turns. Second, the conversation
involves long tail entities. In Q4, “her team” refers to Annett Kaufmann and
SV Boeblingen. However, Annett Kaufmann is not featured in Wikipedia, and
“Boeblingen” would likely be a town rather than the sports club. Thus, entity
linking is not an option in this case.

Limitations of Prior Works. Contextualizing a question from previous turns
[4,15,21,33] can rewrite the user input into a self-contained question, or expand
the input with selected cues from the conversation history, most importantly,
relevant entities and background from Wikipedia.

For coping with tail entities out of Wikipedia, the CONSENT method [33]
leverages the relatedness between the question and previous mentions of named
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entities based on SBERT [29]. However, SBERT vectors are agnostic to the
specific task of relating mentions to informal questions. Also, prior methods
are computationally expensive due to making extensive use of techniques like
cross-encoders, ILP or GNNs. The goal of this paper is to improve the efficiency
of CIR with long-tail entities, while being competitive in effectiveness.

Approach. Our method, EECATS for Efficient and Effective Conversational
search with tAil enTity Selection, reconciles efficiency and effectiveness. We adopt
the idea of expanding questions with mentions from [33], but devise very different
algorithms with much lower computational cost. EECATS has two stages:

1. Contextualization: For each user input, EECATS selects a few top relevant
mentions of named entities from prior turns. We judiciously fine-tune an
SBERT model for this task of question-mention relatedness. The selected
mentions are added to the expanded question.

2. Answer ranking: EECATS feeds the expanded question to a search pipeline
of BM25, ColBERT [31] and a cross-encoder [25], where each stage processes
a decreasing number of answer candidates to tame the increasing costs. A
key point is to avoid repeated computation of embeddings by using a fast
embedding aggregation technique and an in-conversation cache.

Contributions. The salient contributions of this work are the following. 1) We
propose a new way of contextualizing, by fine-tuning SBERT to the specific task of
selecting relevant entities as informative cues. 2) We devise techniques for reducing
the computational costs, including efficient aggregation of judiciously computed
and cached embeddings. 3) Experiments show that EECATS outperforms the best
prior baselines. For questions about tail entities, EECATS is significantly better
in nDCG@3 than the best GPT competitor. For efficiency, EECATS improves
latency by a factor of 37x.

Q1: How did German women do at Olympic table tennis? Final answer ranking:

AL: They reached the semi-finals but lost against Japan. SV Boeblingen had financial problems in 2024. The club of

Q2: Who were the players? Annett Kaufmann had to withdraw from the national league.
A2: Three players: Yuan Wan, Shan Xiaona and Annett
Kaufmann. Shan is the most experienced of them. Shan Xiaona won the WTT Feeder 2022 as a single title.

Q3: And the youngest?
A3: Annett Kaufmann is only 18 years old. She is the

German champion, playing for Boeblingen. ﬁ Cross encoder
Q4: How did her team perform this season?

@ r
| bli | ... of Annett Kaufmann had to witk

I
I
]
I
]
I
Expanded question: BM25 ColBERT i Token
Annett Kaufmann, Boeblingen: |:> Il |:> ! I}embedding I I I
* I
]
I
]
I
]
1

How did her team perform this
season?

In-conversation Cache

Fig. 1: Overview of the EECATS System Architecture
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2 EECATS Methodology

Given a user question @); with prior conversation history H = {(Q1, A1), (Q2, A2),
vy (Qi—1,Ai—1)}, we aim to find the most relevant passage-level answers to Q;
from a collection of news and Wikipedia articles. Figure 1 gives an architecture
overview of EECATS. As we focus on tail entities, we identify entity mentions in
prior turns (Q;, A4;)(1 < j < 14) in two categories: i) in-KB entities that can be
linked to Wikipedia with high confidence, and i) out-of-KB entities that either
are not featured in Wikipedia at all or cannot be disambiguated with confidence.

EECATS selects the top most-relevant mentions and adds them to an expanded
question. Later, EECATS runs the expanded question through a judiciously
designed ranking pipeline of BM25, ColBERT and a cross-encoder. We need to
compute a large amount of embeddings using ColBERT. To mitigate this cost,
our design is to lower the GPU consumption, including light-weight aggregation
of sentence-level embeddings, in-conversation caching and reuse of embeddings.

2.1 Relevant Entity Selection

At the i-th turn, we need to quantify the relatedness between the current question
Q@; and each entity mention e in the history using the following concepts.

For entity e in the j-th turn of the history, the entity context Con(e) is
the j-th turn (i.e., the concatenation of the j-th question and the respective
answer) if e is out-of-KB. If e is in-KB, C'on(e) is concatenation of first Wikipedia
paragraph of e and turn j. We consider the in-KB first Wikipedia paragraph
as a valuable background knowledge for entity selection (e.g., “Shan Xiaona is
a naturalised German table tennis player...”). The turn text where the entity
is mentioned can also provide strong cues like semantic types. E.g., in turn 3
of the example in Figure 1, we could infer that “Boeblingen” refers to a sports
team, which is useful for interpreting Q4. The knowledge representation of e is
Rep®(e) = SBERT (e [SEP] Con(e)), encoding knowledge about the entity.

To capture the flow of information need, we need to compute Rep’ (e) =
SBERT(Q; Qj+1 -.- Qi—1). The relatedness between e and @; is the inner prod-
uct: Rel(e, Q;) = (Rep® (e) + Rep®'(e), SBERT(Q;)). The top-L most related
mentions are prefixed to the current question, forming the expanded question
that is fed into the retrieval stages. Our design captures both static background
about entities and dynamic cues from the conversation for entity selection.

Training. The above computations could be carried out with standard SBERT,
but this would be based on semantic similarity of sentences in general, whereas
our goal is to capture relatedness with entity mentions. Therefore, we fine-tune
SBERT for our specific task based on the following procedure for training data.

We use an LLM to automatically complete a training set of questions (e.g.
Q4*: How did the Boeblingen team of Annett Kaufmann perform this season? of
@4 in Figure 1), and use these as ground-truth annotations. We treat all mentions
that appear in the completed question as being relevant for the interpretation of
the original question, and others as irrelevant ones. With this approach, let £+
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and E~ denote positive entities and negative entities to a given question ;. We
can fine-tune SBERT such that Rel(e™,Q;) higher than Rel(e™,Q;) for every
pair (et,e”) where et € Et and e~ € E~. We use the pairwise ranking loss [2]
to train for entity selection, starting from initial SBERT parameters loaded from
Hugging Face?. In total, we used 10,940 training pairs (e*, e™). Note that this is
a training-time method only. At inference time, no information about relevant
entities is available upfront.

2.2 Passage Ranking

We feed the expanded question into a search pipeline. First, we use BM25 [30] to
retrieve top-100 documents, and all passages in these documents are candidates
to be processed in next ranking stages. Multiple passages in the same document
could overlap on the same sentences. A bi-encoder computes representation
vectors for the tokens in the expanded question and each candidate passage
separately, aggregates these in a judicious manner, and computes scores for
ranking passages. We use ColBERT [31] as a powerful choice for the bi-encoder.

The expanded question token representation Rep®®W (w) of a token w in
the expanded question ¢’ is the embedding of w when we feed ¢’ through the
bi-encoder. For the passages, we start with encoding tokens within their sentences.
Later we aggregate their embeddings for ranking longer passages. For token w in
a sentence s, the sentence token representation Rep®™ (w) of w is the embedding
of w when we feed s through the bi-encoder.

Since questions in a conversation are related to each other, it is likely that
various sentences of the top documents from BM25 are repeated in different turns.
We store sentence token representations in an in-conversation cache, and reuse
them when a sentence re-appears in candidate passages of a future turn. This
caching opportunity is another factor in our design for encoding sentences rather
than entire passage, as the smaller granularity increases the chance of cache hits.

With the independently computed question token representations and sentence
token representations, we can now define how these are aggregated into vectors
at the passage level for scoring and ranking. For expanded question ¢’ and
sentence S with respective token sequences wi,ws, ..., wy and v1,vs, ..., vg;
the maximal similarity vector of S against ¢’ is calculated as Rep®(S,q’) =

G
{r1,72,...,r} where ry = max Cos(Rep®?W (wy,), Rep®W (v;))(1 < k < H) and
j:
Cos is the cosine similarity. For passage A with consecutive sentences S1, So, ...,
Sz, the maximal similarity vector Rep” (A, ¢') of A against ¢’ is Rep”(A,q') =
Z
I]ICH:L;( Rep® (Sk,q' ) where max is element-wise maximum operator.

This is a light-weight technique, which allows us to efficiently compute maximal
similarity vectors for passages of various lengths (with high amount of overlapping)
by aggregating from the smaller granularity of their sentences. Consider a passage
A with maximal similarity vector Rep? (A, q') = {r}, 7}, ...,7%;}, the bi-encoder

. . H
ranking score of A is Y, 7).

4 https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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We employ a computationally heavier cross-encoder for the shortlist of top-100
candidates from prior steps. For each passage, we compute its relevance score
against ¢’ using cross-encoder ° [25], this is the final ranking score of the passage.

3 Evaluation

3.1 Experimental Setup

We use two benchmarks: (i) a new dataset, CATS, focusing on tail entities, and
(ii) the TREC CAsT 2019 and 2020 datasets [6,7] with popular entities. We
measure average nDCG@3, query latency and Tera FLOPS 6.

For the CATS dataset, we adapt the automatic benchmark construction from
CONSENT ([33] for passages as answers. Each question is assigned to one of three
groups: out-of-KB, rare-in-KB, and uncommon-in-KB, based on popularity of
the entity that the question centers on. CATS benchmark consists of a training
set with 840 questions and a test set of 436 questions. The respective collection is
news articles from 2018 [16] and Wikipedia articles from 2017. To judge system
answers, we adapt the automatic judgment approach proposed by CONSENT [33],
built on top of GPT-4 [27]. In CAST, we use a collection of MS MARCO [5] and
TREC CAR [§8]; and CANARD [9] as a trainset. We use gold answers in the
history, to ensure the history is identical for all methods.

We use the following baselines. i) ConvDR: This method [38] is a conversational
dense retriever, obtaining the relevance score as the inner product of question and
answer representations. i) CoSPLADE + T5: CoSPLADE [15] extracts salient
terms in the history for sparse retrieval, and monoT5 [26] is used as re-ranker.
i1i) GPT-3.5: GPT-3.5 Turbo [1] is asked whether a passage is relevant to the
question under the conversation history. The probability of “yes” token is the
final ranking score. ) CQR GPT-3.5: This method uses GPT 3.5 Turbo to
rewrite conversation questions into self-contained ones, which are issued also to
GPT 3.5 Turbo (using probability of “yes” as in GPT-3.5 for relevance score).
v) GPT-4o Anon: This is the same as GPT-3.5 baseline, except that we use
GPT-4o [27] and consistently replace names in the test with anonymous names.
vi) CONSENT: This is the cutting-edge CIR method for tail entities [33], which
jointly contextualizes and ranks. For CoOSPLADE + T5 and CONSENT and
EECATS, we use CATS trainset for CATS test and CANARD for CAsT test.

3.2 Experimental Results

Effectiveness. Table 1 reports the results for the CATS and CAsT benchmarks.
On almost all groups of CATS test, our method significantly outperforms the
state-of-the-art method CONSENT with nDCG@3 being around 9 percentage
points higher for All group, and even higher for the Out-of-KB and Rare groups.
In nDCG@3, EECATS is significantly better than all GPT methods on All

® https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-v2
S https://huggingface.co/spaces/MrYXJ /calculate-model-flops
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Pipelines nDCG (CATS) nDCG (CAsT)| Latency TFLOPS
All Out-of-KB Rare ~ Uncommon | 19 20 (seconds)
ConvDR 0.064  0.049 0.068  0.075 0.466 0.340 0.15 0.5
CoSPLADE + T5 | 0.201  0.224 0.118  0.303 0.478 0.368 51.33 573.0
CONSENT 0.276  0.264 0.203  0.407 0.457 0.334 96.95 247.9
CQR GPT-3.5 0.279  0.310 0.204 0.358 - - 66.96 -
GPT-3.5 0.303  0.311 0.218  0.426 - - 50.18 -
GPT-40 Anon 0.311 - - - - - 101.52 -
EECATS 0.36371 0.358+ 0.3351f 0.414 0.482 0.379f 1.34 21.7
Zero 0.254  0.253 0.174  0.380 0.369 0.271 1.46 29.6
w/o ColBERT | 0.362f} 0.360f  0.322f} 0.426 0.492 0.3941 8.88 46.0
only ColBERT 0.318f 0.328t 0.2611 0.395 0.373 0.298 1.23 21.1

Table 1: Performance on the two benchmarks. The T and I show significant
improvements over CONSENT and all GPT methods (paired t-test, p<0.05).

and Rare groups. Obviously, the LLMs struggle with tail entities that are not
well covered in their training data. The highest contrast in nDCG@3 between
EECATS and GPT methods is on the Rare group (around 12 percentage points
higher), which consist of entities with very low popularities. This pattern could
be seen again when other LMs such as CoSPLADE + T5 and especially dense
retriver ConvDR do not perform well on tail entities either. Regarding CAsT with
a focus on popular entities, Table 1 shows that our method EECATS achieves
competitive nDCG@Q3 on this data as well.

Efficiency. The effectiveness of EECATS does not come at the cost of efficiency.
EECATS is ca. 37 times faster in latency and ca. 11 times lower in TeraFLOPS
than all baselines but ConvDR, which struggles to perform well with the limited
training examples available in CATS. We discuss the efficiency on the CATS test
set, with averages per turn. From the articles returned by BM25, we obtain 8, 788
passages per turn. Many passages in an article overlap on the same sentences,
each passage may have one to five consecutive sentences. After ranking these
passages with ColBERT, we narrow the set down to the top 100 passages for
re-ranking by the cross-encoder. In the default EECATS, ColBERT ranks 8,788
passages in 0.766 seconds, whereas it takes 8.39 seconds to rank all these passages
with a cross-encoder. This speed difference is from the fact that ColBERT encodes
each sentence in the top articles of the BM25 output once, and the maximal
similarity vectors of passages are calculated efficiently with passages of consecutive
sentences. Meanwhile, common texts in multiple overlapping passages could be
processed multiple times if we use only cross-encoder. Overall, the efficiency of
the EECATS pipeline comes from three factors: minimizing the number of times
a cross-encoder is invoked, efficiently aggregating scores for ColBERT, and using
in-conversation caching.

Ablation. We discuss the impact of two simplified pipelines: using only the
final stage (like cross-encoder) to rank all passages from articles returned by
BM25 (w/o ColBERT) and using only ColBERT to rank all these passages
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(only ColBERT). Table 1 gives results. Comparing EECATS and w/o ColBERT
shows that nDCG@3 values are similar, but the default pipeline is 6.6 times
faster. Comparing EECATS against only ColBERT, we observe that nDCG@Q3
for EECATS is much better, while both pipelines have similar latency. Besides,
to verify the importance of fine-tuning SBERT, we compare EECATS against its
Zero version, where the entity selection SBERT model is not fine tuned with our
trainset. From the table, we can see that there is a big nDCGQ@3 gap between
these methods, proving the importance of fine tuning SBERT for entity selection.

4 Related Work

Contextualization. In CIR [14,32,39)], conversational questions are processed by
rewriting into self-contained questions [3,9,10,17-20,24,34-37], or by ezpansion [4,
21,23, 38]. A typical CIR method is CoOSPLADE + T5 [15,26], which follows
the question expansion paradigm, utilizing relevant terms from the history. It
adapts sparse retrieval methods SPLADE [11-13, 22| for conversations, and
uses MonoT5 [26], a T5 [28] model fine-tuned on the MS MARCO, as a re-
ranker. Popular method ConvDR, [38] expands the current question with the
prior history, then encode this into a representation for dense retrieval. Like other
dense retrievers, ConvDR is very data-hungry and thus requires a lot of training
examples for being effective.

CIR with Tail Entities. The state-of-the-art method for CIR with tail entities
is CONSENT [33], which identifies relevant history entities using relatedness
between the current question, prior turns, prior entities and answer candidates.
The actual selection of entities is made by solving an integer linear program
(ILP). This method selects relevant history entities and relevant answers in a
joint manner. The CONSENT method is effective on a difficult benchmark with
tail entities, but it is very slow.

Efficiency. The most effective CIR methods have high latency because they
are based on computationally heavy techniques, like LLM (GPT), GNN (Ex-
plaiGNN [4]) or ILP (CONSENT |[33]). In contrast, a key point of our work is to
design EECATS for low resource consumption and fast response times.

5 Conclusion

The presented method for conversational IR, EECATS, aims to optimize both
effectiveness and efficiency. For efficient computation, our judiciously constructed
pipeline pays the higher cost of a cross-encoder only for the final top-100 candi-
dates. For effective answer ranking, in the presence of tail entities, our design
for question-mention relatedness leverages a specifically fine-tuned light-weight
LM. Experiments demonstrate that the design is successful on both dimensions,
outperforming even LLMs like GPT-4o.
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