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Abstract—In this paper, we apply several modifications to
script identification, several of which inspired by techniques
from the similar audio task of spoken language recognition.
Specifically, we alter the architecture of a convolutional network
with global average pooling to include variance pooling as well,
we utilize score calibration of the output scores of the network,
and we utilize prior distribution estimation to condition the
calibrated scores. We show that these methods are effective in
script identification, with the use of priors showing especially
promising improvements. Furthermore, in the domain of script
identification, several additional extensions of distribution es-
timation are available which consider the distribution within
each image, and we demonstrate much larger improvements
when employing these extensions. Finally, we also show that
an embedding-plus-classifier approach performs similarly to the
full network, and so its potential for increased flexibility may be
beneficial for future consideration. With all modifications, overall
accuracy on the ICDAR 2017 validation dataset increases from
89.7% to 93.6%.
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I. INTRODUCTION AND RELATED WORK

Script identification is an important front-end for optical
character recognition (OCR). If an individual recognizer is
only trained for particular scripts, it is clearly necessary to first
determine which recognizer should be used on the text in a
particular image. It is possible that OCR processing will evolve
to where a single system can recognize multiple languages and
script sets, but in current processing script identification still
plays an important role.

Prior to recent years, a variety of approaches were attempted
for script identification (e.g., see [1]), but, as has been the case
in many fields (including much of computer vision), current
methods largely focus on deep learning. As with much of
image processing and sequence modeling, one challenge is
reducing an input of variable size down to a single common
label. Approaches for this include forcing the input image
to be a common size so that the network naturally maps
down to a label [2], or to use a pooling layer that aggregates
across a variable-sized input. In the recent ICDAR 2017
Robust Reading Challenge in Multi-Lingual Scene Text Script
Identification (RRC-MLT Task 2) [3], among the official
competitors, the top performing system utilized a deep neural
network (DNN) with convolutional layers for initial processing
and global pooling to aggregate the information [4]. Several

variations of that approach were also evaluated, and all per-
formed at similarly high levels, validating the success of the
fundamental design. Alternative poolings, such as Spatially
Sensitive Pooling [5], have also been suggested with otherwise
similar architectures and shown to be successful. Similarly,
modified architectures with global average pooling have been
explored, such as including recurrent layers prior to pooling
[6]. In total, many of the current high-performing sytems
utilize a similar process of initial convolutional layers feeding
into pooling, and so that is what we will explore in the work
that follows.

One advantage of the broad takeover of deep learning across
multiple fields is that it is bringing separate application spaces
like computer vision and audio processing algorithmically
closer together. OCR and automatic speech recognition are
both trending towards character-based end-to-end models.
Face recognition and speaker recognition are both trending
towards similar strategies for DNN embeddings. And so here
we propose bringing the fields of script identification and
spoken language recognition closer together with an explo-
ration of the benefits of applying techniques drawn from
spoken language recognition to script identification. We first
consider an architectural modification with variance pooling
that is common in state-of-the-art audio embeddings. Second,
we apply score calibration learned with heldout data to the
output of the network, which converts the output probabilities
into true likelihoods. We then utilize distribution estimation to
apply priors to the calibrated scores, including new extensions
for within-image priors estimated directly from scores or using
common script pairings. We also explore the embedding-plus-
classifier structure common in spoken language recognition.

II. SYSTEM DESIGN

We describe below the systems and methods for our ex-
periments. In every trial, a system is presented with a line
image xn (resized to 30 pixels in height while maintaining
the aspect ratio and RGB channels) and is asked to predict
a label yn drawn from a script set S, which includes only
the seven classes from the RRC-MLT set: Arabic, Bangla,
Chinese, Japanese, Korean, Latin, or Symbols. Let us refer
to the total number of lines in the dataset as N and the total
number of lines in image k as Mk.



A. Network Architecture and Training

The network architecture utilized in the experiments to
follow is similar to high-performing systems in the original
RRC-MLT Task 2 evaluation, with several two-dimensional
convolutional layers followed by a global average pooling,
as in [4]. However, unlike the RRC-MLT systems, our con-
volutional layers increase in dilation as they work up the
architecture, similar to a time-delay neural network [7], and
the pooling layer includes variance pooling in addition to the
average. Both techniques are from recent language recognition
work [8], though here implemented in PyTorch and at a
reduced size.

Our network begins with a convolutional layer with 128
5x5 filters operating across the three color channels. This is
followed by two convolutional layers with 128 3x3 filters and
dilation factors of 2 and 3, respectively. After the convolutional
layers is an affine layer projecting to size 128 followed by
an expansion affine layer to size 512. These 512-dimensional
representations are then globally pooled, with either mean
pooling or both mean and variance pooling. The pooled
statistics are passed through affine layers of size 128, 50, and
128 before the final output size of 7 with a softmax non-
linearity. Rectified linear units and batch normalization [9] are
included between all layers.

In our experiments, the network was trained to minimize
cross-entropy cost for 200 epochs. For the 10 initial epochs,
lines of 30 pixels in height and 200-400 pixels in length are
presented to the network in batches of 20. For epochs 11-
50, the lines were only 30-200 pixels in length and the batch
size was gradually increased to 50 images. Then, for epochs
51-200, half of the line images were also augmented with
gaussian blur, speckling, rotations, shifts, or cropping. At all
times, Adam optimization [10] is used with a learning rate of
10−3 and a weight decay of 10−6.

For each epoch, 10,000 images were randomly selected
(with replacement) from the training set for each of the seven
scripts, resulting in 70,000 total trials per epoch. This strategy
results in a balanced training set for the network, which means
that the output posteriors of the system and the likelihoods
needed for score calibration (described next) are proportional
and can be converted trivially.

B. Score Calibration

Score calibration is the process of converting the output
scores of a model into true likelihoods using heldout data
matching the expected test domain, and has been a common
component in spoken language recognition systems for years
[11]. Score calibration is most often necessary for the output
of generative models, but here we will explore the value of
score calibration on the output posteriors of a DNN, which
could aid in generalization or reducing model overfitting, and
also could be beneficial in refining scores that were trained
with regularization in the cost function.

Score calibration for multi-class language recognition is
usually performed as a linear transformation of the log-
likelihood `(xn|yn) = log p(xn|yn). Furthermore, the scaling

factor in the linear transform is shared across all classes, and
only the bias term is class-specific.

`′(xn|yn) = α`(xn|yn) + βyn (1)

The parameters α and βyn
are learned to minimize multiclass

cross entropy for heldout training data, as the errors on the
seen training data will be unrealistically low. It is also impor-
tant that the data used to learn score calibration parameters be
a reasonable representation of the test data.

For our experiments, we utilized the publicly-avaliable
toolkit Focal Multi-class [12].

C. Global Distribution Estimation

It has been shown that additional improvements can be seen
in spoken language recognition by estimating the statistics of
the classes in the totality of the test data [13]. The use of prior
distributions is especially helpful in cases where a system has
low confidence. If the output posterior weight is nearly entirely
in a particular class, the use of priors is unlikely to overpower
that confidence, but in cases where a system is less certain, the
use of aggregate prior information can be highly beneficial.

The prior can either be learned from labeled data (with the
assumption that the distribution matches the test data), or it
can be estimated from unlabeled data. In this work, we will
explore both approaches, applying either the train distribution
(as seen in Table I) or a distribution estimated from the output
scores for the test data.

In the process described in [13], a flat prior is first applied
to the calibrated likelihoods, and the resulting posteriors are
used to estimate the distribution of each class in the set. The
prior estimate is interpolated with a uniform distribution, and
so the estimate for iteration i is defined as

pi(yn) = αp′i(yn) + (1− α)p0(yn) (2)

where p0 is a uniform distribution and

p′i(yn) =
1

N

∑
n

pi−1(yn|xn) (3)

α =
N

N +R
(4)

for some relevance factor R. The posteriors are then updated
from the calibrated likelihoods using the new prior.

pi(yn|xn) =
p(xn|yn)pi(yn)∑

yn∈S p(xn|yn)pi(yn)
(5)

This process is repeated for some fixed number of iterations
or until convergence. In our experiments, we always ran 10
iterations (which was found to be consistently sufficient for
reasonable convergence) and the relevance factor R was fixed
as 1 in all cases.



D. Within-Image Distribution Estimation

A potentially powerful modification of global distribution
estimation we propose here is to instead consider the distribu-
tion of labels within each image. This is a sensible adjustment,
as it stands to reason that the scripts of lines within an image
will be drawn from a more specific distribution than the lines
from the entire collection, and this more focused domain
knowledge should improve performance if it can be effectively
estimated.

The process for estimating the within-image distribution is
the same as global distribution estimation, except that the
processing for image k is performed over only Mk lines
instead of N . As a result, a unique prior distribution pk(y)
is estimated for each document. Note that the total line count
Mk will now be much smaller than N in the global case, and
so the presence of the relevance factor R will have a greater
impact on the algorithm. In the case of an image with only
one line of text, the prior will be an interpolation halfway
between the estimated script likelihoods for that line and the
initialization distribution p0 (uniform or global).

E. Script-Pairing Distribution Estimation

We also propose a further extension of within-image prior
probability estimation by incorporating the relationship be-
tween script classes, as some scripts are more likely to appear
together in documents than others. When estimating the global
or within-image prior as described above, this relationship
is not considered. So if the network splits the output poste-
rior weight of a particular line image 50-50 between Latin
and Arabic, while all other lines in the image are labeled
as Chinese with high confidence, we would prefer a prior
estimation strategy that considers that Arabic and Chinese are
highly unlikely to appear together in the same document, while
Latin and Chinese can very plausibly appear together. If we
properly account for this relationship, we would determine
the confusing line to be much more likely to be Latin than
Arabic, while ignoring the relationship would result in equal
probabilities of each.

In order to incorporate this information, the prior distribu-
tion pn for line xn (note that this approach yields a unique
prior distribution for each line) is determined by marginalizing
the joint distribution of two lines n and m from the same
image having any pair of labels. And so, instead of Eq. (3),
the prior is estimated from the joint probability averaged over
all lines paired with line n.

p′n(yn) =
1

Mk − 1

Mk∑
m 6=n

∑
ym∈S

p(yn, ym) (6)

=
1

Mk − 1

Mk∑
m 6=n

∑
ym∈S

p(yn|ym)p̂(ym) (7)

To estimate this distribution, the conditional distribution of
a script pairing p(yn|ym) can be learned from labeled data or
can be estimated from the test scores (only including line pairs

TABLE I
THE VARIOUS PRIORS LEARNED FROM THE TRAINING DATA. FIRST, THE

GLOBAL PRIOR, FOLLOWED BY THE CONDITIONAL PROBABILITIES OF THE
SCRIPT IN ONE LINE IN AN IMAGE GIVEN THE SCRIPT OF ANOTHER LINE
IN THE SAME IMAGE. THE FINAL ROW (NONE) REFERS TO IMAGES WITH

ONLY A SINGLE LINE OF TEXT

Script Priors (in %)
A B C J K L S

Global 5.4 4.7 3.9 6.7 8.2 69.2 1.8

G
iv

en
Sc

ri
pt

Arabic 61.0 0 0 0 0 34.1 4.9
Bangla 0 88.3 0 0 0 10.5 1.2

Chinese 0 0 65.7 0 0 33.9 0.4
Japanese 0 0 0 65.1 2.0 32.3 0.7

Korean 0 0 0 2.0 69.2 27.4 1.4
Latin 0.7 0 0 1.8 1.2 93.9 1.8

Symbols 5.5 0.1 0 1.3 1.8 81.9 9.5
None 4.6 11.8 19.7 8.9 7.4 47.5 0

from the same source image). For the script probability in the
marginalization, we use the output posterior of the network
p̂(ym) = p(ym|xm), which can itself incorporate a global or
within-image prior distribution.

The output of this equation can then be plugged into Eq.
(2) as with the other methods. Eq. (5) then estimates a new
posterior distribution, which is subsequently used as p̂(ym) to
update the estimate of p′n(yn) in Eq. (7).

The conditional distribution p(yn|ym) learned from the
training data is shown in Table I. The potential for this ap-
proach is clear here in several ways. First of all, the conditional
distribution when given one of the scripts is quite different
than when given a different script, and so there appears to be
a great deal of useful information in the pairings. Furthermore,
each of the conditional distributions is quite different from the
global distribution, also shown in Table I, and so we would
similarly expect these distributions to be more appropriate
for their particular cases. Finally, it is clear that most of the
script pairings are rare, and minimizing the selection of these
essentially impossible pairings should be a powerful tool in
script identification.

F. Embedding Plus Classifier

It is also common in spoken language recognition to decou-
ple the embedding and classifier. This process was formerly
necessary, as the ubiquitous i-vector representation was drawn
from a generative model and learned in an unsupervised
fashion, and so a separate supervised process was necessary
to create class probabilities. In recent years, discriminatively-
trained networks have become the standard, but they are still
largely used to draw an embedding from an intermediate
layer and a classifier is separately learned, though recent work
has suggested it may be possible to alter the paradigm [14].
Additional advantages of learning a separate classifier are that
new classes can be added without retraining an entire network,
and the limited number of parameters could result in easier
adaptation in new domains. For completeness, we included
this approach in our experiments, using a Gaussian classifier
with calibrated scoring [15] on the smaller 50-dimensional
penultimate hidden representation in the network.



TABLE II
COMPARING PERFORMANCE OF SYSTEMS WITH AND WITHOUT VARIANCE
POOLING. THE COMPARISON OF MULTIPLE NETWORK SIZES SHOWS THAT

THE IMPROVEMENT IN PERFORMANCE IS DUE TO THE POOLING
MODIFICATION AND NOT TO THE NUMBER OF PARAMETERS.

Pooling Size Accuracy (in %)
Mean Only 425k 90.4
Mean+Variance (Smaller) 391k 90.7
Mean+Variance (Larger) 451k 90.8

III. EXPERIMENTAL DESIGN

For all experiments, we utilize the ICDAR 2017 RRC-
MLT Task 2 images. However, the bulk of the work here
utilizes processing based on grouping the line images from the
same source image, and that metadata has not yet been made
available for the evaluation set. This information is presumably
not yet public in order to maintain the heldout nature of the
set for the continuing evaluation of the related text localization
Task 1 (and joint labeling in Task 3), but we believe that it is
generally not unreasonable to assume the source image for a
line of text could be known, and so the methods presented here
should be broadly feasible. But, because we require data with
the source image known, all our experiments used the provided
validation dataset for evaluation, which does connect each line
to its source image. We also removed 10% of the training set to
use as a heldout set, and the remaining 90% of train was used
for training. So, in this design, the validation data was indeed
treated as heldout and the experiments are fair and serve our
purposes well, but it is important to emphasize this discrepancy
so that the numbers presented here are not compared to the
performance numbers on the official evaluation dataset.

IV. RESULTS AND DISCUSSION

Accuracies on the validation set (our evaluation set) are
shown in Tables II and III. Overall, the full set of alter-
ations suggested here improve performance of the system
from 89.7% to 93.6% when the distributions of the train
data are known to be applicable to the test data. However,
even if this condition is removed and all distributions must
be estimated using only the network predictions, the best
performance only slightly degrades to 93.3%. Overall, this is
a relative improvement of 38% (or 35% in the estimated case),
and clearly shows the power of these methods, especially
the variations of distribution estimation within images. These
results will be examined in detail in the following sections.

A. Variance Pooling

Table II explicitly explores the contributions of variance
pooling in addition to mean pooling, which is used in state-
of-the-art spoken language recognition while recent script
identification methods have only included the latter.

When altering the architecture of the network to accommo-
date variance pooling, it is impossible to match the parameter
allocation exactly. Because two sets of statistics are computed
on the pre-pooling layer, we are presented with the option
of either increasing the size of the input for the post-pooling

affine layer to fit the doubling in size, or to reduce the output
size of the pre-pooling affine layer by half (resulting in an
equal post-pooling size). The former approach increases the
number of network parameters, while the latter decreases it.

In Table II, results for both variations are shown. As can be
seen, modest improvements of 0.3-0.4% are achieved with the
addition of variance pooling. Furthermore, the improvement is
consistent for both the larger and smaller network, suggesting
that the variance pooling is in fact providing the gains instead
of the increase the parameter size.

In Table III, the mean+variance pooling condition is rep-
resented by the smaller network, which was chosen so that
the presented improvements are entirely from the algorithm
instead of increased parameter counts. A comparison across
all conditions shows that the variance pooling consistently
improves performance even though the network is smaller in
size.

B. Score Calibration

Table III shows accuracies across a number of system
designs. The effects of score calibration can be seen by
comparing the first and second column for each pooling type.
Across all cases, calibration is able to improve performance
accuracy modestly but consistently, and, in some cases, the
increase is as much as 1-2% (absolute).

However, the main consequence of the better-behaved post-
calibration probabilities is that they are better suited for the
prediction of and use of more sophisticated prior distributions.
If the network is highly confident in the wrong answer, it
will hurt distribution estimation, and it will prevent the prior
distribution from correcting the mistake. So, a benefit of
score calibration is that it both allows for better distributions
and more corrections from those distributions. This effect is
evident in the performance accuracies in the later rows of Table
III, where the calibrated systems consistently outperform the
uncalibrated systems often by 1% absolute or more.

C. Global Distribution Estimation

Lines (1) and (2) in Table III show performance when
using global prior distributions. In line (1), the distribution
is estimated from test scores, while in line (2) the distribution
is estimated from the training data (so this is not an oracle dis-
tribution, which would use labels from the test data, but does
assume train and test are drawn from similar distributions). It
is worth noting that the estimated distributions perform only
slightly below the distributions learned from the train labels,
and also that performance degrades a bit more without score
calibration.

D. Within-Image Distribution Estimation

Modifying the distribution estimation to work within each
image instead of across images gives a strong improvement of
roughly 1% (absolute) in most conditions. This performance
can be even further improved by first estimating the global
distribution and using it to compute posteriors in the first
iteration of the estimation process (line (4)). It is not surprising



TABLE III
ACCURACY (IN %) ON THE ICDAR 2017 RRC-MLT TASK 2 VALIDATION SET (WHICH WE USE AS OUR TEST SET). ITALICIZED LINES APPLY

DISTRIBUTIONS LEARNED FROM THE TRAIN SET, SO THESE METHODS ARE ONLY APPLICABLE WHEN THE CLASS DISTRIBUTIONS OF THE TRAIN AND
TEST SETS ARE KNOWN TO BE SIMILAR.

Mean Pooling Only Mean+Variance Pooling

Line Global Image Pairing Raw Calibrated Gaussian Raw Calibrated Gaussian
# Prior Prior Prior Scores Scores Backend Scores Scores Classifier

(1) Est - - 89.7 90.4 90.5 90.3 90.6 90.6
(2) Train - - 90.0 90.4 90.5 90.5 90.7 90.7

(3) - Est - 90.8 91.1 91.4 92.0 92.1 91.2
(4) Est Est - 90.9 91.8 92.2 92.2 92.5 91.9
(5) Train Est - 91.0 91.9 92.2 92.2 92.5 91.9

(6) - - Est 90.7 91.4 91.8 91.7 92.1 91.5
(7) - Est Est 90.9 92.9 92.9 92.3 93.3 92.9
(8) Est Est Est 91.4 93.0 93.1 92.3 93.3 93.1
(9) - - Train 91.6 93.1 93.1 92.6 93.6 93.1

that applying image-specific priors would be effective, but
it is noteworthy that the distributions could be estimated
from only a handful of scores within a single image. The
effectiveness of this approach is likely in part tied to the
initial system already performing quite well (∼90% accuracy),
and so fewer measurements can still provide a reasonable
estimate of the true distribution. This is an interesting shift
from global distribution estimation, which is expected to be
most helpful for weaker systems, where knowledge of the
distribution across a large set can offset an underperforming
classifier. The tension between the effectiveness of the within-
image priors and the quality of estimate from only a few lines
would be an interesting relationship to observe as classifier
performance degrades.

E. Script-Pairing Distribution Estimation

Estimating line-specific priors using likely pairings im-
proves performance even further beyond the within-image pri-
ors. Estimating the prior with pairings alone perfoms slightly
above the performance of within-image priors alone, but
slightly lags the performance of estimating within-image priors
using the estimated global prior. However, a meaningful boost
is seen from using the estimated within-image priors to aid
in learning the pairings, increasing performance by over 1%
(absolute) in most conditions. A minor additional gain can be
seen by first estimating the global prior to use in estimating
within-image priors, which are in turn used to estimate the
pairings. However, unlike in the previous two cases where the
best estimated priors roughly matched the priors learned from
the training data, here we see that there are still small gains
available by using the relationships learned in the training data.
As a result, the best performing system with estimated priors
(93.3%) lags the best performing system with learned priors
(93.6%), though both represent substantial improvements over
the initial system at 89.7%.

F. Gaussian Classifier

Substituting the last several layers of the network with
a Gaussian classifier yields performance that is often better
than the uncalibrated network, but usually slightly behind the
calibrated network. As has been previously discussed, addi-
tional benefits of a separate classifier (easier addition of new
classes and easier domain adaptation) may make this approach
preferable considering there are not significant degradations
in performance, but if those particular characteristics are not
highly valued, there is much justification here for substituting
a complete network for an embedding-plus-classifier design.

G. Error Rate for Number of Lines

Results have clearly demonstrated the value of utilizing
versions of within-image prior estimation on the full ICDAR
2017 validation set, and a natural follow-up question is how
the effects depend on the amount of total text in the source
image. In other words, it would be important to know if the
methods are only useful with lots of text. Towards this end,
we also analyzed the results based on the number of lines
drawn from a source image, shown in Table IV. There are a
few noteworthy observations when considering the results in
this way.

First of all, somewhat surprisingly, the largest gains are seen
in images with a single line, where the distribution in the
pairing case is based on other images with only one line. So,
the value for those cases is not so much in the within-image
prior, but rather in localizing the distribution by which scripts
tend to appear alone in images. The reason for this is seen in
Table I where the script distribution in images with only one
text box is quite different from the global distribution. Even
interpolating the global prior with the network likelihoods (as
is done in system (5) in Table IV) improves performance, due
to the mismatch between the global prior and the prior for
single-box images.

We also see the smallest gain in the images with a massive
number of lines. This appears to be largely because all systems



TABLE IV
ACCURACY OF THE INCREASINGLY LOCALIZED PRIORS FOR INCREASING

NUMBERS OF LINES WITHIN THE SOURCE IMAGE. A GREATER NUMBER OF
LINES MEANS A GREATER NUMBER OF MEASUREMENTS USED IN

ESTIMATING THE DISTRIBUTIONS.

# of lines Global (2) Within (5) Paired (9)
1 72.5 78.3 82.0

2-5 88.1 90.5 91.8
6-10 91.1 92.0 93.9
11-20 90.6 92.1 93.5
21-50 90.3 92.6 93.4

50-100 91.8 94.0 94.1
100+ 96.5 97.3 97.7

perform at a higher level on these lines, presumably indicating
that the types of images that would have so many lines have
easier text. The relative performance gains are substantial,
but due to the high accuracies of the systems, the absolute
improvements are fairly modest.

Between the two extremes, the improvements are largely as
we would expect. The performance with the global distribution
is relatively flat across sizes, while each within-image prior
tends to improve with increased numbers of lines.

The script-pairing approach has its strongest advantages
over the within-image approach for images with fewer lines.
This behavior also makes sense. With a large number of lines,
we would expect that the within-image distribution would
include all the scripts present in the image, as each script likely
appears multiple times. However, when there are only a few
lines, then a secondary script may only appear once, meaning
that the pairing approach would reasonably be more effective
at predicting these scripts from the other more dominant script.
It is worth noting that the pairing-based priors are still most
effective in all cases, but the advantage diminishes somewhat
with increasing number of lines.

V. CONCLUSION

In this work, it was demonstrated that script identification
performance can be improved through a number of innova-
tions, most especially by effectively incorporating the aggre-
gate knowledge across all text boxes in a source image. The
estimation of distributions within the test images is shown to
be quite powerful, and estimating distributions based on com-
mon script pairings is even more effective. Additionally, the
inclusion of variance pooling improves network performance,
even with fewer parameters, and score calibration of the output
of the network also yields modest gains. We also showed that
altering the system processing to learn a simpler classifier
based on DNN embeddings is not necessarily detrimental to
performance, and so its greater flexibility may sometimes be
preferred. Overall, these methods demonstrated that, even in
high-performing systems such as the DNNs trained for script
identification, techniques like score calibration and incorpora-
tion of prior distributions can provide substantial gains. In this
case, the systems were improved from an initial accuracy of
89.7% to a maximum accuracy of 93.6%, an absolute gain
of 3.9% and a relative gain of 38%. In the future, these

methods could also potentially be applied to other applications
in computer vision, such as object detection (where certain
objects are likely to appear together) or even face recognition,
in cases where multiple faces are present.
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