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ABSTRACT

Human hearing and human speech are intrinsically tied together, as
the properties of speech almost certainly developed in order to be
heard by human ears. As a result of this connection, it has been
shown that certain properties of human hearing are mimicked within
data-driven systems that are trained to understand human speech.
In this paper, we further explore this phenomenon by measuring the
spectro-temporal responses of data-derived filters in a front-end con-
volutional layer of a deep network trained to classify the phonemes
of clean speech. The analyses show that the filters do indeed exhibit
spectro-temporal responses similar to those measured in mammals,
and also that the filters exhibit an additional level of frequency se-
lectivity, similar to the processing pipeline assumed within the Ar-
ticulation Index.

Index Terms— perception, spectro-temporal, auditory, deep
learning

1. INTRODUCTION

Auditory spectro-temporal cortical receptive fields (STRFs) are ac-
cepted as parts of higher levels of the mammalian hearing chain [1].
They describe linearized properties of cortical neurons in an auditory
cortex, many of which exhibiting selective behavior by enhancing
particular parts of the signal spectrum, particularly in terms of their
different spectral and temporal modulations. Numbering in hundreds
of millions, their existence suggests the capacity of the cortex to pro-
vide multiple views of the incoming acoustic signal for a further in-
formation extraction.

This frequency selectivity is also consistent with the Articula-
tion Index concept (AI), which postulates extraction of speech mes-
sages in independent frequency bands [2]. This ability could account
for the resiliency of speech communication in noisy environments,
a robustness that multistream automatic speech recognition (ASR)
techniques are attempting to emulate by creating multiple parallel
processing streams for extraction of information in speech and se-
lectively alleviating the corrupted streams.

Human speech developed after human hearing [3], and so it is
likely the properties of human speech developed in order to align
with the existing auditory system, as efficient communication would
require that the signal and receiver match sufficiently for the transfer
of information. As a result, the acoustic properties of speech and
the response properties of the human auditory perceptual system are
likely tied together in a fundamental way. Based on this observa-
tion, one might wonder if characteristics of human hearing such as
the modulation-specific STRFs and multistream processing could be
derived automatically in a data-driven fashion from the speech itself.

Some indications that this might be possible are seen in earlier works
[4, 5].

In this work, we explore the hypothesis that data-derived fil-
ters learned from speech data will exhibit spectro-temporal and
frequency-selective multistreaming behaviors of the auditory cortex.
Other work has demonstrated that data-driven training can yield sys-
tems that demonstrate human-like peripheral frequency resolution
[5, 6, 7, 8, 9, 10, 11, 12, 13] and cortical-like sensitivity to modu-
lations [5, 14, 15, 16], so here we extend this trajectory to explore
the spectro-temporal properties. Toward this end, we first examine
properties of filters learned in a data-driven fashion to identify the
phonetic content of speech. We then replicate perceptual analyses on
the learned filters and demonstrate the similarity of their responses
to the human auditory system. We further explore the nature of the
individual filters and observe patterns of frequency selectivity. In
doing so, we demonstrate behaviors in the learned filters that mimic
the modulation-selective and multistreaming properties of human
auditory processing.

2. EXPERIMENTAL SETUP

We begin with a deep neural net (DNN) architecture that learns to
classify context-independent phonemes based on their temporally-
central mel frequency spectral frames. The first layer of the net-
work is a convolutional layer that applies two-dimensional spectro-
temporal (ST) filters in time (i.e., temporal convolution only). The
outputs of these filters are then passed to two additional dense feed-
forward layers with intermediate hyperbolic tangent nonlinearities
and a final softmax non-linearity. The resulting output predicts the
speech class from the 39 context-independent American English
phonemes (including silence). However, the primary focus of this
work is on the front-end ST filters that result from the training for
phoneme classification, rather than the performance of the phoneme
classifier itself.

For data to train the DNN, we selected the Wall Street Journal
database, due to its clean and mostly well-articulated data. We con-
ducted our experiments on a subset of the Wall Street Journal cor-
pus usually referred as SI-284 [17], which is composed of roughly
37,000 sentences spoken by 284 speakers for a total of about 62
hours of data. 10% of this data was removed from training as a
cross-validation set to monitor the progress of the DNN.

Input to our classifiers was provided by 7 Mel-frequency spec-
tral filters [18], with windows of length 20ms extracted every 10ms
(resulting in a frame sampling rate of 100Hz). ST filters were also
given 600ms of context, resulting in each filter having a size of 7x60.
The initial layer of the network had 32 ST filters, and the subse-
quent dense layers were of size 512. These parameters were selected
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Fig. 1. Impulse response of the data-driven ST filters over time and
frequency. Only 300 ms of the ST filters are shown as values near the
filters’ boundaries were close to zero. Labels in the upper left cor-
ner indicate the Mutual Information (MI) in bits between the filtered
speech and the phone labels for each ST filter.

Fig. 2. Responses to ripple analysis for each filter, which are laid out
in the same orientation as Fig. 1. In many cases, the responses show
a highly localized selectivity in their spectro-temporal behavior, in-
dicated by small regions of intensity.
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Fig. 3. The aggregate response of all 32 ST filters to the ripple anal-
ysis. The results are very similar to human responses found in [20],
and the ranges of sensitivity (5-15 Hz in rate; up to 0.7 cycles/octave)
are known to be critical to the information content of speech. [21, 22]

first to provide sufficient context for meaningful temporal modula-
tion analysis (600ms), and then to optimize performance in phoneme
classification on the held-out validation set, in the end resulting in a
phoneme classification error rate of approximately 22%.

3. DATA-DERIVED ST FILTER ANALYSIS

Upon training the network, we performed a set of analyses of the
front-end ST filters in order to explore the consistencies with prop-
erties of the auditory system. The analyses include inspection of the
individual filters, ripple analysis to quantify modulation responses,
and measurements of spectral responses to speech input.

3.1. Individual ST Filters

Time-frequency responses of the 32 ST filters trained on the 7 mel-
spaced filter bank spectrum of the center of the phonemes are shown
in Fig. 1. For display purposes, the filter values were linearly inter-
polated (on the mel-scale) from their original 7x60 grid. The filters
typically show a temporal span of about 200ms and a nonuniform
frequency response.

The contribution of each filter to the phoneme classification task
was also quantified by computing the mutual information (MI) be-
tween the individual filter outputs and the frame labels [19]. The
filters are ordered in Fig. 1 in decreasing MI (with MI values printed
in the upper left of each response).

3.2. ST Filter Ripple Analysis

Visual inspection of the derived ST filters suggests that the filters
are enhancing particular spectral resolutions (scales) and particular

modulation frequencies (rates), but a better quantification of this ef-
fect is desirable. To evaluate the range of enhanced spectral and
temporal modulations, we followed the protocol used in evaluating
sensitivity in human listeners in [20], in which systems are presented
with a series of probe signals with spectro-temporal ripples of vary-
ing rate and scale. For this analysis, we projected spectra with a
variety of spectro-temporal ripples on the filters and derived the sen-
sitivities by computing the energy ratio of the output to the input for
the particular signal. The response for each filter is shown in Fig. 2,
ordered in the same grid as in Fig. 1 so locations are consistent.

Inspection of the responses shows the selectivity of many of the
individual filters, with a number of them focusing on particular re-
gions in the modulation space (indicated by localized regions of high
response). So, the outcome of this analysis suggests that the filters
are specializing in their responses, with many of them focusing on
particular spectro-temporal modulations. This sort of behavior was
hypothesized as learnable from speech based on the selectivity of
cortical processing previously discussed, and we see here that it in-
deed can be automatically learned.

Considering the response of the filters in aggregate is also of in-
terest. We see in the previous analysis that the individual filters are
obeying properties expected based on auditory processing, but over-
all properties of mammalian ST responses are also known, and so
their relation to the filters should be explored as well. With this in
mind, the average energy response of the filters to the ripple probe
signals is shown in Fig. 3. This response is similar to the responses
shown in [20], though there are some differences. As seen, the fil-
ters enhance temporal modulation frequencies between 5 and 15 Hz
(higher than reported for human listeners [20]) and smooth the spec-
trum rather heavily by attenuating frequency modulations greater
than approximately 0.7 cycle per octave. These modulations are
dominant for carrying linguistic information in speech [21, 22] and
are consistent with observed human hearing sensitivities to spectro-
temporal modulations [23]. So, in aggregate, we see that, like with
the individual ST filters, the data-derived system is behaving simi-
larly to our expectations based on auditory cortical processing.

Note that this analysis was repeated with 30 mel filters to ensure
the spectral smoothing was not simply a product of the small num-
ber of filters. The analysis produced very similar results, with the
ST filters derived with the increased frequency resolution actually
showing a slight preference to greater spectral smoothing and nearly
identical responses to temporal modulation. The analysis was also
repeated with non-central frames for phones included in the training,
and, again, the overall response of the filters to ripple analysis was
consistent. The stability of the responses in these subsequent exper-
iments suggests the human-like spectro-temporal behavior is indeed
fundamental to the data-driven learning, and not simply a lucky arti-
fact of a particular study.

3.3. ST Filter Response to Speech

To evaluate the frequency selectivity of the derived ST filters, the
training data was projected frame-by-frame on each filter, with a few
selected examples shown in Fig. 4. We then measured the ratio of
the averaged energy of the speech by filter k to that of the original
speech within each spectral band, given by

Hk,i =
1
N

∑
n |(x ∗ fk)i[n]|

2

1
N

∑
n |xi[n]|2

where ∗ is the convolution operator.
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Fig. 4. A selection of filter output responses to speech input. The average ratio of the responses over time to the inputs are shown in Fig. 5

Fig. 5. Spectral energy ratios of the filter output to input speech for
the learned filters from Fig. 1. Spikes in the responses reveal the
frequency selectivity of the filters.

As seen in Fig. 5, the filters are often highly selective, with
strong peaks in the spectral energy ratio. This was already demon-
strated to some extent with the ripple analysis in Fig. 2, but this is
noteworthily different in that this is showing frequency selectivity in
addition to the already demonstrated spectro-temporal modulation
selectivity. Furthermore, this confirms that the spectro-temporal se-
lectivities exhibited in Fig. 2 align with particular frequency-limited
events within speech.

4. CONCLUSION

The initial exploration presented here yielded data-derived spectro-
temporal filters that qualitatively resemble spectro-temporal cortical
receptive fields observed in mammalian cortices. Most filters en-
hance certain carrier frequencies within speech and focus on ranges
of modulations which are dominant for carrying linguistic informa-
tion in speech. Ripple analysis of the resulting ST filterbank indi-
cates that the filterbank enhances modulation frequencies in the 5-15
Hz range and spectral scales up to 0.7 cycle/oct. Such sensitivities
are consistent with observed human hearing sensitivities to spectro-
temporal modulations.

This work demonstrates that auditory processing and data-driven
methods are not necessarily as divergent as they would often appear.
In the future, we hope to continue these analyses in the presence
of noisier and more challenging training speech in order to study the
changes in the front-end filters learned for improved robustness. The
analyses presented here also suggest that data-derived networks are,
to some extent, automatically learning multistreaming behavior, and
so architectures that encourage this sort of processing pipeline will
be explored to increase the network’s capacity for multiple views of
the data.
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