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ABSTRACT

Deep-learning based single-channel speech separation has been
studied with great success, though evaluations have typically been
limited to relatively controlled environments based on clean, near-
field, and read speech. This work investigates the robustness of such
representative techniques in more realistic environments with mul-
tiple and diverse conditions. To this end, we first construct datasets
from the Mixer 6 and CHiME-5 corpora, featuring studio inter-
views and dinner parties respectively, using a procedure carefully
designed to generate desirable synthetic overlap data sufficient for
evaluation as well as for training deep learning models. Using these
new datasets, we demonstrate the substantial shortcomings in mis-
matched conditions of these separation techniques. Though multi-
condition training greatly mitigated the performance degradation
in near-field conditions, one of the important findings is that both
matched and multi-condition training have significant gaps from
the oracle performance in far-field conditions, which advocates a
need for extending existing separation techniques to deal with far-
field/highly-reverberant speech mixtures.

Index Terms— single-channel speech separation, deep learn-
ing, far-field speech

1. INTRODUCTION

A common situation that arises in audio featuring multiple speak-
ers at meeting or casual conversation scenarios is that those speak-
ers will inevitably speak simultaneously [1–4]. This can lead to
a breakdown of performance in speech technologies, such as au-
tomatic speech recognition (ASR) and speaker identification, as
the models are unable to tease apart the speech from the different
sources. Speech separation seeks to solve this problem by produc-
ing non-overlapping waveforms for each speaker from a recording
in which multiple speakers are talking at the same time. Speech
separation studies have been initiated from computational audi-
tory scene analysis based on the human auditory system [5] and
extended to statistical modeling based on independent component
analysis and/or non-negative matrix factorization [6, 7].

Recently, supervised speech separation has become a more
powerful alternative due to the development of machine learning
techniques, including deep learning [8–15]. These supervised meth-
ods require preparation of parallel training data, typically gener-
ated synthetically, of overlapping speech mixtures and their corre-
sponding source speech signals or masks. The bulk of recent work
conducted on deep-learning based speech separation has been done
mainly using the mixture of the Wall Street Journal (WSJ0) [16]

corpus. This dataset consists of read speech of news utterances,
recorded in a clean environment on close-talking microphones,
which are then synthetically added to form overlapped speech [8].
Obviously, this environment is not representative of our practical
speech separation scenarios that inevitably include noise and rever-
beration. This paper investigates the robustness of the speech sep-
aration techniques utterance-level Permutation Invariant Training
(uPIT) [11], Recurrent Selective Attention Network (RSAN) [14],
and Deep Clustering (DPCL) [8] in more realistic environments
with multiple and diverse conditions.

To this end, this paper first establishes the process of creating
multi-domain datasets which allow clean/noisy and near/far-field
comparisons. Since evaluation metrics and model training require
ground truth single-speaker speech, we created a system to iso-
late high-quality single-speaker speech regions from the real multi-
talker corpora. Finally, we analyze the robustness of the above three
different deep-learning based methods under the varying conditions
using the multi-domain datasets.

2. CORPUS SELECTION AND DATA PREPARATION

This section describes the construction of multi-domain datasets of
two-speaker mixtures that are effective for quantitative analysis of
speech separation techniques: (1) selecting corpora consisting of
differing difficulties for speech separation, (2) extracting single-
speaker segments from noisy corpora, and (3) generating mixture
lists which match the pre-existing WSJ0 dataset as closely as pos-
sible. We are releasing the code and resulting mixture lists used in
our experiments for reproducibility and use in further studies1,2.

2.1. Corpus Selection

To assess varying difficulties for speech separation, we selected the
WSJ0, CHiME-5 [3], and Mixer 6 [17] speech corpora. The WSJ0
corpus was selected due to the pre-existence of a synthetic overlap
dataset [8], a standard of speech separation evaluation. This dataset
has been effectively used in a number of speech separation research
experiments, and so its composition was the model for our dataset
generation pipeline.

The CHiME-5 corpus was chosen to serve as the most chal-
lenging, “realistic” condition. The corpus consists of dinner parties

1https://github.com/mmaciej2/kaldi/tree/
chime5-single-speaker-generation/egs/chime5/single speaker generation

2https://github.com/mmaciej2/kaldi/tree/
mixer6-single-speaker-generation/egs/mixer6/single speaker generation
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Table 1: Synthetic overlap dataset statistics. ‘mean utt. usage’
refers to the average number of times a single-speaker segment is
used in a synthetic mixture, giving a sense of how much repeated
speech is present in overlap mixtures.

mean mean
spk. mix. total utt. mix.

corpus set count count length usage length

WSJ0
train 101 20k 30.4 h 4.6 5.5 s
dev. 101 5k 7.7 h 2.8 5.5 s
eval. 18 3k 4.8 h 3.4 5.8 s

Mixer 6

train 451 20k 28.3 h 1.0 5.1 s
dev. 50 5k 6.1 h 1.0 4.4 s
eval. 45 3k 4.1 h 1.0 4.9 s

train 100k 453 100k 98.3 h 1.3 3.5 s

CHiME-5 train 32 20k 12.7 h 3.4 2.3 s
dev. 8 5k 3.3 h 8.1 2.4 s

recorded with microphone arrays placed around the apartment as
well as binaural microphones, allowing us to generate parallel near-
field and far-field datasets with identical utterances. This condition
resulted in a number of unique challenges in the audio, such as natu-
rally occurring non-speech noises, multiple simultaneous speakers,
and time-varying locations.

The Mixer 6 corpus was chosen to serve as a middle ground
between the WSJ0 and CHiME-5 corpora. Including interviews
recorded with 14 microphones in a constructed recording room, the
Mixer 6 corpus allows a similar near- and far-field comparison, but
in a more controlled environment with stationary speakers, consis-
tent channel, and relatively minimal noise.

2.2. Cleanup Methods

To ensure the source data is single-speaker, we used a pipeline im-
plemented with the Kaldi Speech Recognition Toolkit [18] follow-
ing two stages:

Stage 1) Run a speech activity detection (SAD) system to pro-
duce reasonable utterances. The SAD system used is a Time-Delay
Neural Network-based system with statistics pooling trained as in
[19] with reverberated LibriSpeech [20] data and added noise from
MUSAN [21]. The SAD output is then merged with single-speaker
region labeling, which comes from the reference transcription for
CHiME-5 and an energy-based analysis for the Mixer 6.

Stage 2) Perform segment verification by removing utterances
which are too short, have incorrect speaker labels, or are non-
speech vocalizations. We used a state-of-the-art speaker identifica-
tion setup with x-vectors [22] and a probabilistic linear discriminant
analysis (PLDA) scoring backend [23,24]. The models were trained
using the VoxCeleb [25] and VoxCeleb2 [26] corpora augmented
with MUSAN [21] and reverberated with the simulated room im-
pulse responses described in [27]. We scored utterance embeddings
against embeddings extracted from all speech by its speaker and
rejected the utterances below a qualitatively-tuned score threshold.

2.3. Mixture List Generation

For consistency, we generated the mixture lists to be compatible
with the MERL scripts for generating overlap3 and with similar

3http://www.merl.com/demos/deep-clustering/

properties to the WSJ0 mixtures. Still, there was a lot of freedom
in how to pair utterances from the base corpus to generate mixtures.
As a result, we created the mixture lists algorithmically according
to a set of desirable criteria selected to maximize data diversity and
efficiency:

1. avoiding mixtures of two utterances by the same speaker
2. minimizing repeated usage of single utterances
3. maximizing speaker diversity within pairs using an utterance
4. pairing utterances of similar length

We selected two microphone conditions from each corpus for use in
our experiments. For the far-field CHiME-5 condition, we selected
the first channel of the first microphone array. For the near-field
CHiME-5 condition, we used the left channel of the binaural mi-
crophone for the speaker corresponding to each utterance. For the
far-field Mixer 6 condition, we chose channel 9, which is the mi-
crophone placed farthest from the speaker. For the near-field Mixer
6 condition, we chose channel 2, which is the lapel microphone for
the subject.

2.4. Overlap Dataset Design

In constructing the CHiME-5 and Mixer 6 mixture data, an attempt
was made to match the WSJ0 mixture data as closely as possible.
The most natural correspondence was to construct train, develop-
ment, and test sets of equivalent size (20k, 5k, and 3k mixtures
respectively). We chose mixture energy ratio levels following the
same distribution as well. However, because the size of each source
corpus varied, the usage of each speaker and utterance varied as
well. Comparison of usage statistics are in Table 1.

In both the CHiME-5 and Mixer 6 mixture datasets, we con-
structed both near-field and far-field conditions. When doing so, we
used identical utterance pairs, as opposed to generating new mixture
sets, to reduce the number of confounding factors when comparing
performance between near-field and far-field conditions.

In addition, due to the extensive size of the Mixer 6 corpus in
comparison to the WSJ0 and CHiME-5 corpora, we were able to
construct additional, larger training sets for both Mixer 6 conditions.
In these datasets the total size of the training data was increased five-
fold to 100k (train 100k), allowing us to do deeper analysis in how
quantity of training data affects the model performance.

Finally, we constructed a training set of equivalent size by com-
bining each of the five base datasets (WSJ0, CHiME-5 near and far,
Mixer 6 near and far). Two iterations were created. In the first, the
combinations were sub-sampled to maintain the size of 20k train-
ing examples. In the second, they were fully combined, resulting in
100k examples. These sets allowed us to analyze the potential for
producing a robust system based on training on a wide variety of
properly manicured data.

3. SPEECH SEPARATION TECHNIQUES

This section describes three representative deep learning mask-
based techniques, uPIT [11], RSAN [14], and DPCL [8]. These
methods all use bi-directional long short-term memory (BLSTM)
recurrent neural networks to process input mixture magnitude spec-
tra with the ultimate goal of producing a spectral mask for each
speaker. The mask is applied to the mixture spectrogram, which is
then inverted to reconstruct the estimated source waveforms. How-
ever, the way in which these masks are generated in each method
differs.
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The uPIT and RSAN networks produce estimated speaker soft
masks directly, relying on some mechanism to solve the permuta-
tion problem of an order of output masks while training. They are
essentially trained with the mean squared error loss between the es-
timated (masked) and ground truth source magnitude spectra.

LossuPIT,RSAN(M̂, π) =
1

TFS

S∑
s=1

‖M̂s ◦Amix−Aπs‖
2
F , (1)

where M̂s ∈ [0, 1]T×F is the estimated mask on source s, and
Amix,As ∈ RT×F≥0 are the short-time Fourier transform (STFT)
magnitudes for the mixture and source s, respectively. The summa-
tion over S represents the different sources in a mixture. T and F
denote the numbers of frames and frequency bins, respectively. π is
the permuted source sequence of oracle magnitude spectra, chosen
to match the sequence of estimated masks, where πs returns the s-th
element of π, i.e. the ground truth source index matching the s-th
estimated mask.

In the uPIT method, the network is set up to produce a fixed
number of output masks, where the permutation problem is solved
by scoring the output masks against all possible orders of source
spectra, and only performing backpropagation on the source order
π̂uPIT that results in the lowest loss:

π̂uPIT = argmin
π∈P

LossuPIT,RSAN(M̂, π) (2)

where P represents all possible permutations of sources within a
mixture.

In the RSAN method, each pass through the network produces
only a single output mask. The network takes an “attention mask”
as input in addition to the mixture spectra. By subtracting each es-
timated source mask from the attention mask, the mixture can be
passed through the network multiple times, being forced to attend
to a new source each time. Due to the difference in functionality to
the uPIT method, in the RSAN network the permutation problem
is solved in a greedy manner, with each successive mask M̂s be-
ing paired with the remaining unpaired oracle speaker π̂RSAN

s that
produces the lowest loss:

π̂RSAN
s = arg min

s′∈S̃
‖M̂s ◦Amix −As′‖2F

S̃ = {1, . . . , S} \ {π̂1:s−1},
(3)

where S̃ is the subset of the original source set created by removing
the previously selected source indices {π̂1:s−1}.

The DPCL method uses the network to produce an embedding
vector for each STFT coefficient, which can then be clustered to
produce hard binary masks. The loss function used in DPCL is
based on the squared Frobenius norm between oracle and estimated
affinity matrices:

LossDPCL(V) = ‖VV> −YY>‖2F (4)

The affinity matrix can be generated using the outer product of a
matrix Y ∈ {0, 1}(TF )×S with itself, where the s-th column of Y
is a TF -dimensional binary vector encoding the STFT coefficients
belonging to source s. The affinity matrix is estimated with the self-
outer product of a matrix V ∈ R(TF )×D that is produced by the
DPCL network, consisting of a D-dimensional embedding vector
for each STFT coefficient.

Table 2: Comparison of experimental setup on SDR improvement
with the WSJ0 2-speaker mixture dataset.

method SDRi

field-reported

uPIT-BLSTM-ST [11] 10.0
RSAN [14] 8.6
DPCL [8] 5.8
DPCL++ [9] 10.8

experimental
uPIT 9.3
RSAN 9.5
DPCL 7.7

4. EXPERIMENTS

4.1. Experimental Setup

The spectrograms were generated using a STFT from down-
sampled 8 kHz audio with a window length of 512 and a step of
128 in the case of the uPIT and RSAN experiments, and a window
length of 256 and a step of 64 in the DPCL setup. The input to the
networks was the mixture magnitude spectrum. The input speech
was a mixture of two speakers, and the systems always output ex-
actly two masks (i.e., S = 2 in Section 3).

Both the uPIT and RSAN networks used in our experiments
consist of two 600-node BLSTM layers followed by a linear layer,
with a sigmoid output. The uPIT network has an input dimension
F of 257 with a final output of 514 for two speaker masks, while
the RSAN network has an input dimension of 514 to account for the
attention mask, with a final output of 257, and is run twice to recur-
sively extract two speaker masks. The DPCL network used in our
experiments also used two 600-node BLSTM layers followed by a
linear layer, with hyperbolic tangent and `2-normalization. The in-
put dimension F was 129, and the output dimension was 5,160, cor-
responding to an embedding dimension of 40 (i.e., D = 40). The
backend used in the DPCL setup to produce masks was k-means
clustering with cosine distance between embedding vectors with
k = 2 (two speakers). All networks were trained for 200 epochs
with an initial learning rate of 0.001 using the Adam [28] optimizer.

For evaluation, we used three standard evaluation metrics: sig-
nal to distortion ratio (SDR), signal to interferences ratio (SIR), and
signal to artifacts ratio (SAR) [29] implemented in the mir eval li-
brary [30]. Our primary, and most typical speech separation metric,
was SDR, while we additionally used SIR and SAR for our initial
experimental comparisons. We also provide the SDR of the unpro-
cessed corpus for reference and for computation of SDR improve-
ment.

4.2. Results and Analysis

We analyzed the robustness of the speech separation techniques
based on our implementations of RSAN, uPIT, and DPCL with mul-
tiple datasets, as introduced in Section 2. We used widely-reported
SDR improvement on the WSJ-2mix [8] dataset to verify that our
implementations used are within the range of state-of-the-art per-
formance, reflected in other reports, as shown in Table 2.

Matched and Mismatched Conditions

Results of experiments containing models trained purely on in-
domain data are presented in Table 3. Overall, performance de-
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Table 3: Comparison of SDR, SIR, and SAR in matched-condition training and evaluation sets

uPIT RSAN DPCL

dataset wsj mx6 ch5 mx6 ch5 wsj mx6 ch5 mx6 ch5 wsj mx6 ch5 mx6 ch5
near near far far near near far far near near far far

metric
SDR 9.41 6.86 7.12 4.05 2.21 9.69 6.92 7.20 3.53 1.78 7.80 3.24 2.37 -3.11 -2.85
SIR 14.18 10.28 10.10 5.90 4.10 14.45 10.54 10.47 5.57 3.76 16.32 9.94 8.46 2.70 3.58
SAR 11.79 10.72 11.32 10.40 9.30 12.04 10.77 11.21 10.69 10.35 10.31 8.59 9.13 8.64 8.45

Table 4: SDR with 20k-mixture train sets and varying test condi-
tions. To emphasize the difference between near and far conditions,
the numbers greater than 5.0 are highlighted, with boldface used for
the best result per evaluation condition.

RSAN

eval wsj mx6 ch5 mx6 ch5
near near far far

train

wsj 9.69 4.99 6.12 1.05 1.13
mx6 near 7.53 6.92 7.01 2.23 1.01
ch5 near 7.13 5.64 7.20 2.31 1.70
mx6 far 2.38 2.99 3.53 3.53 0.45
ch5 far 1.53 -0.55 1.13 -1.14 1.78

oracle 13.98 13.18 13.06 9.59 10.86

corpus 0.15 0.17 0.33 0.34 0.32

grades as we move from clean to more noisy conditions as well as
from near- to far-field. We also see that the uPIT and RSAN net-
works produce similar results due to their similar separation frame-
work, as discussed in Section 3, while the DPCL shows stronger
degradation. This may be due to a lack of tuning the speech/noise
threshold parameter, and also is not representative of the more ad-
vanced and better-performing DPCL++ [9] method reflected in Ta-
ble 2, which includes improvements to signal reconstruction and
soft masking. Similar trends are reflected across all three metrics,
so we chose to report only the standard SDR metric for all other ex-
periments. For similar reasons, we restrict our results to the RSAN
method, chosen due to being one of our best-performing methods.

Experimental results of all train–test configurations using train-
ing sets of size 20k are shown in Table 4. Interestingly, the dataset
mismatch among clean and near-field conditions did not cause a
serious degradation despite the noisy and speaking-style variations
across the datasets. However, we observed a large degradation in
any combination of training and test data when including far-field
conditions. Although the oracle performance computed from the
ideal ratio mask, shown in Table 4, presents intrinsic difficulties of
far-field conditions compared to near-field conditions, the observed
degradation in using speech separation was even greater.

Effect of Multi-Condition Training and Training Data Size

We see that the training conditions comprised of a combination of
all corpora (combo), presented in Table 5, result in performance
near that of matched training for each condition. Increasing the
amount of training data five-fold (train 100k combo) improves per-
formance further. This result suggests multi-condition training,
which is widely used in speech processing, is still effective for deep-

Table 5: 20k- and 100k-mixture train sets SDR comparison

RSAN

eval wsj mx6 ch5 mx6 ch5
near near far far

train
20k

mx6 near 7.53 6.92 7.01 2.23 1.01
mx6 far 2.38 2.99 3.53 3.53 0.45

combo 7.45 5.45 6.22 2.84 2.15

train
100k

mx6 near 7.99 7.48 7.53 2.67 1.63
mx6 far 3.39 3.64 4.24 4.49 1.25

combo 9.01 6.80 7.53 4.08 3.07

oracle 13.98 13.18 13.06 9.59 10.86

corpus 0.15 0.17 0.33 0.34 0.32

learning based speech separation. However, the performance in far-
field conditions is quite poor, even with multi-condition training or
increased quantity of training data.

From our experiments, we can conclude that current speech
separation techniques are reasonably robust across the datasets in
near-field conditions. However, these experiments also reveal that
both matched and multi-condition training have significant degra-
dation in far-field conditions, a differing result from other learning-
based speech processing, notably automatic speech recognition
[31, 32].

5. CONCLUSIONS

In this work we demonstrated shortcomings of supervised speech
separation techniques in mismatched conditions which were not
captured by previous evaluation conditions. We provided new syn-
thetic overlap datasets that expand the domain of single-channel
speech separation evaluation from clean, near-field conditions to
far-field, realistic conversational speech. Using these datasets,
we showed that performance degradation in far-field conditions is
largely unsolved. Though the lack of robustness can be mitigated
by training models on more data from multiple conditions, there
remains a significant gap from the oracle performance in far-field
conditions, which advocates a need for extending separation tech-
niques to deal with far-field speech mixtures.
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