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Abstract
We describe in this paper the experiences of the Johns Hop-
kins University team during the inaugural DIHARD diarization
evaluation. This new task provided microphone recordings in
a variety of difficult conditions and challenged researchers to
fully consider all speaker activity, without the currently typi-
cal practices of unscored collars or ignored overlapping speaker
segments. This paper explores several key aspects of currently
state-of-the-art diarization methods, such as training data se-
lection, signal bandwidth for feature extraction, representations
of speech segments (i-vector versus x-vector), and domain-
adaptive processing. In the end, our best system clustered x-
vector embeddings trained on wideband microphone data fol-
lowed by Variational-Bayesian refinement, and a speech activ-
ity detector specifically trained for this task with in-domain data
was found to be the best performing. After presenting these
decisions and their final result, we discuss lessons learned and
remaining challenges within the lens of this new approach to
diarization performance measurement.
Index Terms: speaker diarization

1. Introduction
Speaker diarization is the problem of organizing a conversation
into the segments spoken by the same speaker (often referred
to as “who spoke when”). While diarization performance con-
tinued to improve, in recent years, individual research projects
have tended to focus on specific datasets or domains (such as
Callhome, AMI, or broadcast). This, at the very least, makes it
difficult to compare performance, and, more problematic, could
lead to divergent solutions that overfit to particular characteris-
tics.

In response to this research rut, the inaugural DIHARD
challenge was intended to provide a standard set of data drawn
from diverse and challenging conditions to evaluate current sys-
tem performance and provide a standard set for future diariza-
tion research. The development (dev) data released with labels
during the challenge included data from ten diverse domains
ranging from monologues to interviews with children to meet-
ings to internet videos. An additional three domains were in-
cluded in the evaluation (eval) data as well, though truth marks
for this set were not available at time of writing, and so the
effects of those additional domains remain unknown. This re-
sulted in a highly diverse and challenging dataset for diariza-
tion.

Additionally, teams were invited to participate on two
tracks. The first track followed a standard often utilized for
Callhome diarization research in which oracle speech marks are
known. In Track 2, however, teams were required to automat-

ically estimate marks with a speech activity detection (SAD)
algorithm.

This paper describes the submissions for the inaugural DI-
HARD challenge from the Johns Hopkins University (JHU)
team, as well as our experiments on the path from an initial
system built for Callhome diarization to our final microphone
diarization system. The discussion also includes possible direc-
tions for future work, as the limited time of the challenge meant
many paths were necessarily left unexplored.

2. DIHARD Challenge Experiments
Through the course of this challenge, we explored a number of
system configurations. This section outlines our initial system
along with the set of experiments that guided our final system
design. For simplicity, the results are discussed using diariza-
tion error rate (DER) with no unscored collars and including
overlapping speech, which was one of the two official metrics
of the evaluation. The second metric, mutual information (MI),
is not included here because the high-level conclusions are es-
sentially the same as with DER.

2.1. Initial System

As a starting point for the challenge, we began with our ex-
isting system built for performance on Callhome [4]. In that
previous work, oracle speech marks were used, and so a SAD
system was needed in order to build a baseline for Track 2. For
this purpose, we used a bidirectional long short-term memory
(BLSTM) DNN that processed all data at 8kHz (more details
on this system in Section 2.3).

In order to map speech marks to speaker marks, the initial
baseline system divided the speech signal into 1.5-2 second seg-
ments with a one second hop. I-vectors [1] were extracted for
each of the these segments based on 20 mel-frequency cepstral
coefficients (MFCCs) at 10ms hops, scored with probabilistic
linear discriminant analysis (PLDA) [2, 3] and clustered using
agglomerative hierarchical clustering (AHC) with average link-
ing of scores (instead of rescoring at every merge). Stopping
criteria for the AHC was determined with unsupervised cali-
bration and confirmed with a parameter sweep on dev. System
components were trained for this initial system with data from
NIST SRE ’04,’05,’06, and ’08, and the speech was processed
at 8kHz.

Scores for the initial system for the dev and eval set on both
tracks are shown in Table 2. These numbers served as our start-
ing point (or “out of the box” solution) for the challenge.

Previous Callhome diarization research had found refin-
ing the clustering marks with a frame-level diarization system



utilizing subspace models via Variational Bayes (VB) 1 to be
highly effective [5]. However, in our initial experiments, it was
found to be detrimental to performance, and several modifica-
tions were required. As a result, the VB refinement is left out of
our initial system, and the modifications necessary for the im-
provements seen in the final submissions are described in Sec-
tion 2.9.

2.2. Speaker Representation

The initial system utilized i-vectors as the speaker representa-
tion, but recent work has shown that DNN-based representa-
tions called x-vectors [6] can also be effective for diarization
[7]. Since that initial report, x-vectors have improved perfor-
mance significantly with multiclass discriminative training [8]
and augmented training data [9].

All JHU x-vector systems for this challenge utilized Kaldi
[10]. 8kHz systems used features of 20 MFCCs drawn from 23
mel bins, while 16kHz systems used 24 MFCCs drawn from 30
mel bins. For i-vector systems after the initial system described
above, first-order differences (deltas) were also appended as
feature inputs, and for all systems after the initial system, a
sliding mean normalization was applied over a 3 second win-
dow. X-vector systems were built in accordance with previous
speaker recognition work [9], except the embedding layer was
limited to 128 or 256 dimension. The initial i-vector system
used a 1024-component UBM and 64-dimensional subspace,
while the final i-vector system increased to a 2048-component
UBM and 128-dimensional subspace.

Performance for x-vectors and i-vectors was measured for
a number of different training lists built from combinations of
VoxCeleb [11], various broadcast news corpora distributed by
LDC (primarily in English, Arabic, or Chinese), audio from Eu-
ropean Parliament videos, Librispeech, or Mixer 4/5.

As was shown in prior work [9], x-vectors are more able
to capitalize on larger quantities of training data, as their per-
formance continues to improve with additional data, while i-
vectors, on the other hand, did not improve in performance with
additional data beyond VoxCeleb. In all cases, PLDA parame-
ters were also learned from the VoxCeleb dataset. Additionally,
unlike in previous Callhome work [4], we found PLDA to be
more effective when trained with all same-speaker audio in the
same class, as opposed to training to the combination of speaker
and channel. For whitening lists, however, the best data com-
bination was found to include VoxCeleb, Mixer 4/5, and the
provided DIHARD data, and this combination was best for all
systems.

2.3. Speech Activity Detection

Track 2 of the DIHARD challenge required systems to esti-
mate their own SAD marks. Our initial SAD system utilized a
BLSTM-DNN trained with the CURRENNT2 toolkit on a sub-
set of 8kHz telephony from Switchboard with synthetic varia-
tions such as added noise, reverberation, and low-bitrate speech
coding. Input features were 13 MFCCs computed every 10ms
with deltas and double-deltas appended. This system was found
to perform at a miss rate of 10.2% at a false alarm of 4.6%
on the DIHARD dev data. The threshold for separating speech
and non-speech can be modified in order to shift the balance of
misses and false alarms, but we found that misses are a prefer-

1Code available at http://speech.fit.vutbr.cz/software/vb-diarization-
eigenvoice-and-hmm-priors

2https://sourceforge.net/projects/currennt/

Table 1: DER scores on the dev data comparing performance
for both x-vectors and i-vectors with 8kHz or 16kHz speech. The
additional bandwidth in 16kHz processing is clearly helpful in
the task

Type Sample Rate Track 1 DER Track 2 DER
i-vector 8kHz 24.81 35.84
i-vector 16kHz 21.74 33.72
x-vector 8kHz 23.42 34.69
x-vector 16kHz 21.42 33.17

able error in SAD systems for segment-clustering diarization,
presumably because including segments of non-speech can cor-
rupt the clustering, creating additional errors beyond the SAD
mistakes. Furthermore, every second of corrected false alarms
results in a second of overall error reduction, while corrected
misses still need to be clustered properly to reduce final error,
so it may simply be that lower false alarm rates more reliably
map to improved final error.

In order to improve SAD performance on this data, we first
trained a 5-layer time-delay neural network (TDNN) [12, 13]
with 16kHz microphone data of audio from European Parlia-
ment videos, again with various synthetic variations to add more
diversity to the training data. The benefit of a TDNN for this
task is that it can incorporate a wider input context without ex-
ploding the number of parameters. In this case, each layer dou-
bles the width, resulting in +/-320ms of input context for each
frame-wise speech/nonspeech decision. However, this system
performed resulted in worse performance than the initial SAD
system, with a much higher miss rate of 17.4% at a similar false
alarm rate of 4.8%.

But, if we instead retrained only the final sigmoid classifier
layer with the provided dev data (or, when testing on dev, with
a two-fold split of the dev data), the performance improved be-
yond the baseline (7.3% miss and 4.1% false alarm). A similar
strategy using MFCC input features was also effective (7.3%
miss and 6.0% false alarm), but retraining the final layer of the
TDNN yielded the best performance. Taking this strategy an ex-
tra step and training separate final layers for each domain was
able to provide small additional gains for dev (6.1% miss and
4.2% false alarm), but reduced performance on eval, as will be
discussed in more detail in Section 2.7.

2.4. Signal Bandwidth

The initial diarization system utilized by the JHU team was built
for the telephone recordings of Callhome, and therefore was
only trained for 8kHz data. However, the DIHARD challenge
data is sampled at 16kHz, and so half of the bandwidth would
be ignored without retraining with 16kHz data. Results com-
paring performance on both data at each sampling rate can be
seen in Table 1 for both x-vectors and i-vectors. In both cases,
the systems were only trained with VoxCeleb, though for the
x-vector training, data augmentation was also employed.

The results in Table 1 show clearly that using the full signal
bandwidth provides an advantage for these systems, especially
for Track 1. Based on these experiments, our research focused
on utilizing 16kHz processing in both i-vector and x-vector sys-
tems.



2.5. Signal Enhancement

Given the presence of microphone recordings from multiple
noisy environments, we tested the effects of signal enhancement
via mask-based speech separation. The specific algorithm used
to estimate the spectral masks utilized a BLSTM-DNN trained
with CHiME-3 data [14]. Several insertion points for the mask-
ing were explored: in front of test (dev) data only; in front of
test and PLDA training data; in front of test, PLDA, and i-vector
training data.

Overall the effects of mask-based separation were detri-
mental to diarization, dropping performance in one system from
22.8% DER to 28.7% when only enhancing test data, and to
24.1% when enhancing all training data as well. However, for
the SEEDLINGS domain, the enhancement led to consistent
gains (from 44.7% DER to 38.7% in the matched case). More
analysis is required to fully understand this effect, but it might
indicate that some noisier files benefitted from the estimated
masks, and that a mask estimation algorithm trained with a more
diverse set of data sources could be more broadly effective as a
diarization front-end.

2.6. AHC Threshold

An important parameter for speaker diarization with AHC de-
termines when the AHC merges should stop. In past work, un-
supervised estimation of this threshold proved to be effective
for Callhome diarization [4], but it can also be determined in
a supervised fashion when labeled in-domain data is available,
typically by sweeping the threshold for optimal DER perfor-
mance.

For the DIHARD challenge, we found supervised thresh-
olding to be a consistently effective approach. However, in the
case of wideband i-vectors, a small gain of roughly 0.2% DER
was attainable with unsupervised threshold estimation on the
eval data. However, due to time constraints, this method was
not used for the final submissions, which instead used super-
vised estimation learned on the dev set.

2.7. Domain-specific Processing

The gains found from utilizing dev data for SAD retraining
or representation whitening suggested that specialized systems
could yield improvements for this challenge. Continuing that
logic, we tried domain-specific processing for both our SAD
system and for learning the AHC threshold.

For SAD, separate final DNN layers were learned for every
domain using the known labels of the dev data. A domain esti-
mation was also learned with a simple logistic regression clas-
sifier using the mean of the features across the file. Running the
SAD for the estimated domain resulted in an improvement on
SAD performance for held-out dev data (improving miss/false
alarm from 7.3%/4.1% to 6.1%/4.2%), but these gains did not
map to eval, resulting in an overall degradation in DER perfor-
mance on the baseline i-vector system (43.9% to 45.0%).

Similarly, an attempt was made to use domain-specific
thresholds to stop AHC merges. In this case, the thresholds
were learned on known dev labels, and a domain estimator was
again trained, this time using the segment i-vectors. In this case,
the threshold was defined by a linear combination of domain-
specific thresholds weighted by the posterior probability for
each domain in the estimation. While performance improved in
held-out dev experiments, the metrics again degraded for eval.

These two domain-specific experiments modified differ-
ent modules of the pipeline, varied in their domain estimation

(though both performed at over 80% accuracy on held-out dev
data), and differed in making hard or soft domain assignments.
And yet, in both cases, performance improved on dev but de-
graded on eval. This outcome suggests that either the domain-
specific processes are overfitting the dev data, or the presence of
unseen domains in the eval data is problematic enough to over-
come the improvements seen in dev. Without eval truth labels, it
is difficult to know at this time, but, either way, we were unable
to capitalize on domain-specific processing for the challenge.

2.8. System Fusion

Finally, we explored fusing the PLDA scores of multiple sys-
tems prior to AHC clustering. The scores themselves were
fused via a weighted sum with coefficients learned to optimize
performance on the dev set. After fusion, the scores were clus-
tered in the same fashion as for an individual system. Early in
the challenge, we saw worthwhile improvements from fusion,
but, by the end, the system fusion prior to clustering was only
yielding a small gain over our best x-vector system. Further-
more, as can be seen in Table 2, the VB refinement (discussed
in the next section) essentially wiped out those gains, resulting
in essentially equivalent performance between our best x-vector
system and best fusion.

2.9. VB Refinement

After segment clustering (which is the outcome of all modules
discussed to this point), it is often helpful to refine the mark
boundaries, as the initial segmentation was likely too quantized.
This step would seem to be especially important in the case of
the DIHARD challenge, where the practice of unscored collars
around speaker transitions was abandoned, requiring more pre-
cise labeling. However, the VB refinement previously found to
be highly effective for Callhome [5] was initially detrimental to
system performance.

Improving the VB refinement for this data took a few steps.
First, parameters were re-learned with 16kHz microphone data
(in this case, VoxCeleb). Then, the stopping criteria and opti-
mization criteria were de-coupled and early stopping was em-
ployed. In previous work, the VB refinement was permitted to
iterate until convergence. However, for this data, that leniency
was found to degrade performance, and stopping earlier was
found to be a better practice. In fact, permitting only one pass
yielded the best results.

This development not only helped VB refinement more
consistently improve performance, but it also raised interesting
questions about the underlying models for microphone diariza-
tion. The fact that the optimization criteria is less connected to
improved diarization suggests that there is an incorrect assump-
tion, a possibility that warrants further analysis. The changing
dynamics of far-field microphone recordings (non-stationary
noise, moving sources, etc.) may violate the total variability as-
sumption that diarization is finding a speaker in the same chan-
nel. If the channel is indeed varying throughout the recording,
this would not only explain the degradation in VB refinement as
compared to Callhome, but also the improvements found here
by training PLDA to recognize speakers across channels (as is
done for speaker recognition) instead of speakers within chan-
nels. Again, this requires more analysis, but the possibility is
quite interesting and could have important implications for fu-
ture diarization with microphone/far-field recordings.

Table 2 shows the performance of the final clustering sys-
tems with and without VB refinement (system details in the next
section). Comparing each system with and without VB refine-



Table 2: Dev and Eval performance measured in DER for both tracks for several JHU systems, including the final submitted systems
(marked with *). Details of the initial system and final submissions are described in Sections 2.1 and 2.10, respectively

Track 1 Track 2
System Dev DER Eval DER Dev DER Eval DER
All same speaker 35.97 39.01 48.69 55.93
Initial System 26.58 31.56 40.89 50.78
i-vector, no VB 21.74 28.06 33.72 40.42
x-vector, no VB 20.03 25.94 31.80 39.43
Fusion, no VB 19.54 25.50 31.79 39.00
i-vector, with VB* 19.69 25.06 31.29 37.41
x-vector, with VB* 18.20 23.73 29.84 37.29
Fusion, with VB* 18.17 23.99 30.31 37.19

ment shows that the addition is quite advantageous to perfor-
mance in all conditions. The gains diminish with better cluster-
ing, but the process is clearly valuable for all cases.

2.10. Final Submissions

The aggregation of all these factors can be seen in Table 2,
where performance results for the final JHU submissions are
shown for both dev and eval.

The i-vector system was trained on 16kHz VoxCeleb data,
while the x-vector system (which resulted in a 256-dimensional
embedding) was trained on an aggregation of 16kHz data
from VoxCeleb, Mixer 4/5, Librispeech, European Pariliament
videos, and various broadcast news corpora. In both cases,
PLDA parameters were trained with VoxCeleb, and thresholds
were learned in a supervised fashion on the dev data. VB re-
finement followed, as described above, on all systems, and all
submission systems used the TDNN SAD with the final layer
retrained with dev data.

The fusion is then the combination of the i-vector system
and two x-vector systems (128 dimensions and 256 dimen-
sions), fused as described above. Interestingly, there are gains
from fusion without VB refinement, but with VB refinement in-
cluded, the single x-vector system is essentially equivalent to
the fusion.

With all factors combined, the improvements from the ini-
tial system to the final submissions are clear in both tracks.
In Track 1, our performance improved by 7.83% DER, while
Track 2 performance improved by 13.59% DER, an improve-
ment of approximately 25% relative in both cases. This process
was a valuable experience in generalizing diarization to simul-
taneously perform in a variety of environments, and these gains
show that the process was a success. At the same time, the error
rates are still high (especially for Track 2) and so it is clear that
there is still plenty of opportunity for the future.

3. Future Work
As the descriptions above should demonstrate, the initial experi-
ence of the JHU team for the inaugural DIHARD challenge was
mostly devoted to updating existing systems to work in the chal-
lenging microphone conditions of the evaluation. And while
this was an important and worthwhile process, there were many
longer-term research directions that were largely left for future
work.

For one, we were unable to devote resources to handling the
overlapping speech that is frequently present in real conversa-
tional dynamics. Roughly 8% of the absolute error in our sys-

tems was from overlapping speech, which accounted for at least
a fifth of our error in Track 2, and a third in Track 1. However,
the challenge of overlapping speech is not trivial, as it will likely
require a complete rethinking of the diarization process, since
our current system simply does not allow for multiple speakers
to be responsible for the same frame of speech. This is an im-
portant direction, but could not be addressed during the limited
duration of the challenge.

Although significant gains were made during the challenge
in SAD performance, this remained another source of signifi-
cant error. It is also somewhat disappointing that improvements
in SAD required retraining on truth marks provided with the dev
data. Ideally, SAD systems should work reasonably well with-
out requiring in-domain supervision, and this is a bar that our
systems were unable to clear. A robust and widely-applicable
SAD is another area of continuing research.

It is also the case that, given the nature of this evaluation,
we do not yet know the details of the successes and failures of
our systems beyond the overall performance, since eval truth
marks were not provided to teams. As a result, an important
step for future work will be to better understand the sources of
error in the eval set. This is especially important for understand-
ing the effect of the unseen domains, as well as measuring the
degree of overfitting to the specific nuances of the dev data. So,
understanding directions for future work is also a goal of future
work, once the receipt of the truth marks allows for a deeper
understanding of the shortcomings of the submitted systems.

4. Conclusions
The inaugural DIHARD challenge provided an opportunity
to measure diarization performance in challenging conditions
without the benefit of knowing the answers. This process was a
valuable experience in rethinking systems to work in more gen-
eral conditions, but also in confirming the effectiveness of our
general pipeline. By the completion of the evaluation, we had
trained more effective diarization systems with wideband data,
learned how to make VB refinement more effective in micro-
phone conditions, and built a single x-vector system that was
essentially our best performing diarization system.
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