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ABSTRACT

Currently, datasets that support audio-visual recognition of people
in videos are scarce and limited. In this paper, we introduce an ex-
pansion of video data from the IARPA Janus program to support this
research area. We refer to the expanded set, which adds labels for
voice to the already-existing face labels, as the Janus Multimedia
dataset. We first describe the speaker labeling process, which in-
volved a combination of automatic and manual criteria. We then dis-
cuss two evaluation settings for this data. In the core condition, the
voice and face of the labeled individual are present in every video. In
the full condition, no such guarantee is made. The power of audio-
visual fusion is then shown using these publicly-available videos and
labels, showing significant improvement over only recognizing voice
or face alone. In addition to this work, several other possible paths
for future research with this dataset are discussed.

Index Terms— multimodal, audio-visual, speaker recognition,
face recognition, multimedia

1. INTRODUCTION

The importance of video data in areas of audio, speech, and image
processing has been steadily increasing in recent years. While inter-
est has existed at some level for decades, the prevalence of video-
sharing websites like YouTube as well as an ever-growing list of
video-hosting social media sites has significantly increased the need
to automatically process this type of data. As a result of this trend,
using multiple modalities in video processing has drawn attention in
numerous areas of research, such as diarization [1, 2], event detec-
tion [3], handwritten character recognition [4], and speech recogni-
tion [5, 6]. In the work to follow, we will explore the problem of
person recognition in multimedia data.

Person recognition is the general task that includes speaker
recognition and face recognition. The overarching paradigm of these
tasks is that there is some labeled enrollment data that is used to de-
fine a model for a given person. That model is then compared against
unknown data to determine the presence or absence of the enrolled
people. In speaker recognition, a person is identified according to
their voice, and in face recognition, a person is identified accord-
ing to their face, but person recognition uses any information source
available, which could include voice or face or both.

The potential power of combining face and speaker technolo-
gies was previously explored for automatic tagging of web videos
[7]. The degree of success of that combination is difficult to assess,
as the evaluation is performed on an internal set of exclusively auto-
matically labeled data, and the fusion performance is not compared
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to any baselines for reference, but feasibility of the combination is
clearly demonstrated.

A similarly-named task to person recognition was explored in
the MediaEval challenge [8, 9]. Participants were asked to perform
person discovery across multiple videos, which differs from recog-
nition in that there is no enrollment data. And so, despite the similar
terminology, this task is more like multimodal diarization.

In the work that follows, we will review existing datasets for
speaker and face recognition in videos. We will then discuss our
process for expanding one of those sets, the IARPA Janus video data,
to include labels for speaker as well as face. Using that data, which
we call the Janus Multimedia dataset, we benchmark speaker and
face recognition systems, and then demonstrate that the fusion of the
two systems results in large performance gains over either system
alone. Finally, we discuss other areas of future work that the Janus
Multimedia dataset can support.

2. VIDEO DATA FOR SPEAKER AND FACE
RECOGNITION

As interest has expanded into the processing of multimedia data,
datasets that originate from videos have become more prevalent in
speaker and face recognition. However, though they are sourced
from multimedia data, the unused modality is often thrown away
prior to distribution. As a result, resources for research into multi-
modal recognition algorithms are currently limited.

2.1. Speaker Recognition Corpora

The recently released Speakers in the Wild (SITW) dataset [10] ad-
dresses speaker recognition in diverse video recordings. This corpus
provides challenging conditions for speaker recognition, but, as of
yet, the image portion of the videos has not been released. As a
result, while this is an interesting and difficult dataset for speaker
recognition, it does not support multimodal processing.

Even more recently, the VoxCeleb database [11] was released.
This corpus is distributed as unique identifiers to online videos, and
so the visual elements of the videos could be utilized as well. How-
ever, since the purpose of the dataset is speaker recognition, it was
collected with automatic labeling of speakers based on face recogni-
tion and lip reading. As a result, the labels are likely strongly biased
towards face recognition performance.

A collection of public speaking videos was released several
years ago related to a demonstration of fast and efficient speaker
identification with locality-sensitive hashing [12]. This dataset is po-
tentially valuable for multimodal recognition, as the videos include
both visual and audio representations of the individuals. However,
despite the number of videos being reasonably large (1,111 videos),
the number of speakers with multiple videos is somewhat small (74



speakers), significantly limiting experiment size. Also, since the
videos are all of technical talks, the conditions are not as diverse
as those in a generic video collection.

2.2. Face Recognition Corpora

The face recognition community has also shown strong interest in
video data, though often these datasets are distributed as short seg-
ments or keyframes with no corresponding audio track. YouTube-
Faces [13], for example, is drawn from YouTube videos that include
individuals from the Labeled Faces in the Wild dataset [14], but is
distributed only in the form of key frames drawn from the original
videos.

Another type of face recognition corpus drawn from videos uti-
lizes annotations of professionally produced video content, such as
the Movie Trailer Face Dataset [15], which is built from annotated
movie trailers found on YouTube. Other similar efforts have anno-
tated sections of television episodes (i.e. Buffy the Vampire Slayer
[16]) or films (i.e. Hannah and Her Sisters [17]). In most cases,
these datasets can support audio-visual research (and some sets, such
as Hannah and Her Sisters, are already even labeled for voice).
However, the videos themselves here are professionally produced
and often limited in the number of unique identities, and so they are
highly domain-specific. Though there are numerous other potential
research areas for which these are very well suited, their small size
and specific domain potentially limit their generalizability.

In the last few years, the IARPA Janus program has been explor-
ing face recognition in challenging conditions, including in videos1.
While the videos are only labeled for face recognition, the original
audio is available in many cases, allowing for the possibility of mul-
timodal recognition. The videos include a challenging and diverse
set of conditions and channels, and the data is multilingual, adding
another unique challenge. Futhermore, the data is openly distributed
under a Creative Commons license via NIST, making it ideal for
open research. In the next section, we will discuss our process for
determining speaker labels on the IARPA Janus video data in order
to create a dataset for multimodal recognition.

It should also be noted that the recent video addition to the
UMDFaces dataset [18] is also a compelling possibility for multi-
modal recognition, and labeling this dataset for speakers is a poten-
tial area for future work.

3. LABELING IARPA JANUS DATA FOR SPEAKER

The video portion of the IARPA Janus Benchmark-B (IJB-B) dataset
[19] includes 7,011 videos. Manually inspecting all videos for the
presence of voice would require a massive effort, and so we in-
stead utilized several automatic measures to narrow down the videos
which required manual labels.

First, we limited the video set to only those videos with an audio
track, which immediately trimmed the list of videos to 2,312. We
refer to this subset of the videos as the Janus Multimedia dataset,
as this is the group of videos with both audio and visual elements.
However, we still require labels for whether or not the labeled indi-
vidual’s voice is in the audio.

To lessen the manual annotation effort, we first ran an automatic
process to identify easy cases of same or different speakers. For
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more reliable results, we first removed videos with less than five sec-
onds of speech according to automatic speech activity detection. The
videos that were found to have sufficient speech were then scored
against each other with an i-vector speaker recognition system [20].
In this case, the i-vector extraction was trained using mel-frequency
cepstral coefficients (MFCCs) computed on Fisher English data. The
probabilistic linear discriminant analysis (PLDA) models [21, 22]
were subsequently trained with telephony and microphone data from
NIST Speaker Recognition Evaluations and Mixer6 that was also
augmented with reverberation and added noise. This system was
measured to yield a minimum detection cost function (mDCF) [23]
of 0.67 (Ptarget = 0.01) on the SITW evaluation, which is a rea-
sonable single-system performance on the task [24].

The scores of the audio tracks of the Janus videos were used to
score every video pair for the likelihood of the presence of the same
speaker. These scores were then used to identify videos that yielded
large-magnitude negative scores in all trials where they are labeled
for the same individual in the original face labels, suggesting that
the videos do not have the same voice even though they do have the
same face. Videos that were flagged according to these scores were
assumed to be missing the voice matching the face label.

Anomalous cases that required manual inspection were identi-
fied visually in the score matrix sorted to group identities together,
which created a block diagonal structure of high scores within label
groups. Groups with any anomalous scores were flagged for manual
annotation. Manual confirmation of the borderline trials is essential,
because automatic labeling would necessarily remove all the diffi-
cult trials. Here, instead, the difficult trials were simply flagged for
human annotation.

This alternatively means that any videos with high speaker
recognition scores for all target trials are not guaranteed to have been
manually checked for presence of voice. Many of these videos did
receive subsequent confirmation of their labels during the selection
of enrollment data (described below) or experimental error analysis,
but only those with anomalous scores are guaranteed to have been
checked manually.

The final step was to determine the set of individuals with suf-
ficient videos to be included in the enrollment set. First, a list was
assembled of individuals with at least two videos. The videos for
these individuals were then manually inspected for suitability as en-
rollment data, meaning that the video is sufficiently long (at least
five seconds of the correct voice confirmed by a human) and that the
video is not a segment drawn from the same recording as any of the
test trials. Some enrollment videos include multiple speakers, and so
an approach inspired by the “assist” condition in SITW was adopted
in which five seconds of the labeled speaker’s speech was marked in
all enrollment videos for system’s to use as needed.

In the end, this process yielded a total of 1,593 videos that were
determined to have both the face and voice of the labeled individual,
drawn from the original 2,312 videos with an audio track. Further-
more, an enrollment set of 362 individuals was built, with exactly
one video per person used for enrollment data. The enrollment list
was split into a development (dev) list and evaluation (eval) list. The
remaining videos were also split to ensure no overlapping speakers
between dev and eval and then added to the test sets. We refer to the
reduced set of 1,593 videos as the core subset, because these are the
videos where the audio and visual recognition systems should agree.
The full 2,312 videos provide a wilder situation where it is unknown
if the audio and visual systems should agree or not. The importance
of this full condition in application settings was emphasized in [7]
for the purpose of automatic tagging of web videos. The statistics of
the dev and eval lists for both conditions can be seen in Table 1.



List Videos Trials
Condition Split Enroll Test Target Nontarget

CORE Dev 102 319 244 32,294
Eval 258 914 681 235,131

FULL Dev 102 436 317 44,155
Eval 258 1,516 1,005 390,123

Table 1. Statistics of the Janus Multimedia dataset. The core subset
includes only videos with both face and voice of the labeled person,
while the full set includes all videos with audio.

4. FUSION OF SPEAKER AND FACE RECOGNITION

As a first experiment with this expanded set of labels, we explored
the combination of speaker and face recognition systems for multi-
modal (audio-visual) person recognition.

4.1. Speaker Systems

We considered two different speaker systems in these experiments.
The first is the i-vector system described above, which uses MFCC
features and augmented telephone and microphone data for PLDA
training, and was measured to perform reasonably well on SITW, a
video-based speaker recognition corpus.

The second system uses deep neural network (DNN) embed-
dings [25] denoted x-vectors, but still utilizes a PLDA back-end
trained with augmented telephone and microphone data. The DNN
that produces the x-vectors is built as described in [25], with several
time-delay layers [26] followed by a temporal pooling to aggregate
statistics across a wide context. The output of this pooling is passed
through several densely-connected layers, finally outputting through
a soft-max classification layer trained to identify the speakers in the
training set. While the system is trained for this direct identifica-
tion, the network is used at test-time to extract the x-vectors from
the first layer after the temporal pooling. This system is available for
download through the Kaldi distribution2.

Neither speaker system utilized diarization, either for enrollment
or test videos, instead building representations from all available
speech. These experiments were intended as an initial exploration
into multimodal recognition, and so the effects of additions like di-
arization were left for future work.

4.2. Face System

Our face processing system used an open-source deep learning pack-
age available online3. This system uses a Multi-task Cascaded Con-
volutional Network [27] for detection, and FaceNet [28] trained on a
subset of MS-Celeb-1M for recognition (model 20170512-110547).

Frames for processing were uniformly extracted every second.
For enrollment data, we averaged the representation of all faces de-
tected in the video’s sampled frames in order to yield the face model
for that individual. Then, the maximum cosine score (minimum co-
sine distance) between the model and each detected face in a test
video was used as the score for the entire video with that model. In
this way, the face recognition system was able to utilize the most
basic version of diarization, though more sophisticated methods like
face tracking were left for future work.

2http://kaldi-asr.org/models.html
3https://github.com/davidsandberg/facenet

CORE FULL
System EER mDCF EER mDCF

Audio
i-vector (s1) 13.0 0.663 23.0 0.762
x-vector (s2) 11.5 0.534 21.9 0.675

s1+s2 9.8 0.561 21.1 0.681
Visual FaceNet (f1) 6.0 0.372 8.1 0.474

AV
s1+f1 3.7 0.265 8.2 0.410
s2+f1 3.8 0.243 7.6 0.394

s1+s2+f1 4.0 0.249 9.0 0.417

Table 2. Equal error rate (EER) and minimum detection cost func-
tion (mDCF) for all systems on the Janus Multimedia eval dataset.
The fusion of audio and visual systems yields much better perfor-
mance than any system alone, especially on the core subset.

4.3. Fusion

The fusion of the systems was performed by converting the output
scores into log-likelihood ratios using calibration [29] trained on the
dev set. Once the scores are in this form, fusion can be accomplished
by summing the log-likelihood ratios from the individual systems.
This form of fusion assumes that the systems are independent draws
from the same label, which is a valid assumption for the core subset
but not for the full list.

4.4. Results

Performance results on eval for each system can be seen in Table 2 in
the form of equal error rates (EERs) and mDCFs (Ptarget = 0.01),
metrics commonly used in speaker recognition. The full detection
error tradeoff (DET) curves [30] for a subset of the systems on the
core subset can also be seen in Fig. 1.

A first observation is that the i-vector performance metrics are
very similar for the core subset of Janus Multimedia as for the SITW
evaluation (mDCF = 0.67). While these numbers are not directly
comparable, it is reassuring that the similar datasets yield similar re-
sults. This also demonstrates that, like SITW, the audio conditions in
this dataset are very difficult and challenging, which is not surprising
considering the diversity of conditions.

It is worth noting that the x-vector system comfortably outper-
forms the i-vector system. It is also clear in Table 2 that the face
recognition system yields better performance than either speaker
recognition system.

However, the most noteworthy result is that the fusion of audio
and visual systems yields huge improvements in performance, es-
pecially on the core subset. The inclusion of the audio scores with
the visual scores reduces the metrics by roughly a third (relative)
from those of face alone, and the DET curve in Fig. 1 confirms that
these gains are consistent across all operating points. This gain from
multimodal fusion is massive compared to the smaller and operating-
point-dependent improvement seen from combining the two speaker
systems. So, the improvements from audio-visual fusion truly ap-
pear to come from the complementarity of the modalities rather than
simply from the benefit of multiple systems.

However, the results on the full dataset also demonstrate that
these gains are dependent on the correctness of the assumption that
all scores are drawn from the same label. When that assumption no
longer applies, relative improvement from fusion is reduced by half.
The assumption fails because these trials in which the face is present



Fig. 1. DET curves on the core subset for the x-vectors (s2 from
Table 2), FaceNet (f1), and their fusion, which show the gains from
fusion are consistent across all operating points.

without the corresponding voice are drawn from the target distribu-
tion for face scores, but from the non-target distribution for speaker
scores (since the labeled person is not speaking). This effect is espe-
cially clear in the score histograms in Fig. 2 which show that target
and nontarget scores are generated from different distributions for
trials in the core subset, but they are largely generated from the same
nontarget distribution in the remainder of the trials. This indicates
that an alternative approach is likely necessary for fusion, which is
an area for future work.

5. FUTURE WORK

Several areas of future work were identified above, such as incor-
poration of speaker diarization, face tracking, or alternative fusion
methods for improved performance when both face and voice are not
reliably present, but there are several other potentially interesting di-
rections for research that the Janus Multimedia dataset can support.

Many videos include multiple faces and/or voices, and multi-
modal diarization could be a valuable improvement over speaker
diarization or face tracking alone. Additionally, matching faces to
voices in the video through diarization could be one potential solu-
tion to the fusion problem, in which the speaker and face scores are
only fused if they are from the same person. Similarly, syncronizing
the speech with lip movement [31] could serve the same purpose.

Many videos also include written text, either in subtitles or in
background images. Optical character recognition (OCR) could be
an interesting contribution to determining the identity of individuals
in the video. The work above focused on audio-visual recognition,
but other modes like written text could easily contribute as well.

The IJB-B release also includes names of the individuals in the
videos (all are famous public figures), which opens up interesting
opportunities as well. One such possibility is to utilize a knowl-
edge base with information about the enrolled individuals. In this
approach, additional characteristics such as age, spoken language, or
topic of spoken content could be utilized to further refine the likeli-

(a) Trials in the core subset (Voice matching label)

(b) Remaining trials in the full set (Voice likely not matching label)

Fig. 2. Score histograms from the x-vector system for target and
nontarget trials (normalized for each class). In trials with the la-
beled person’s voice (a) the two distributions are reasonably well
separated. But in trials without the labeled person’s voice (b) the
distributions are essentially indistinguishable, showing why fusion
is not as effective.

hoods. Incorporating this type of information with automatic speech
recognition, OCR, or scene analysis is another potential area of fu-
ture work.

6. CONCLUSION

In this work, we reduced the IARPA Janus video data to a subset
with both audio and visual elements, called the Janus Multimedia
dataset. This set of videos was further reduced to those with both the
face and voice of the labeled individual, called the core subset. The
validity of these datasets and the power of the multimodal approach
for recognition was shown in preliminary experiments, where the
fusion of the two improved performance by 30% relative or more.

In addition to these initial experiments, several areas of potential
future work were discussed, showing that this dataset has the poten-
tial to support a diverse set of future research. In order to facilitate
this work throughout the community, labels for both conditions of
the Janus Multimedia dataset will be included in future releases of
the IARPA Janus data through the NIST website4.
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[29] Niko Brümmer and David A. van Leeuwen, “On calibration
of language recognition scores,” in Proceedings of Odyssey,
2006.

[30] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and
M. Przybocki, “The DET Curve in Assessment of Detection
Task Performance,” in Proceedings of the European Con-
ference on Speech Communication and Technology, 1997, pp.
1895–8.

[31] Joon Son Chung and Andrew Zisserman, “Out of time: auto-
mated lip sync in the wild,” in Workshop on Multi-view Lip-
reading, ACCV, 2016.


