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Abstract
Measuring performance of an automatic speech recognition
(ASR) system without ground-truth could be beneficial in many
scenarios, especially with data from unseen domains, where
performance can be highly inconsistent. In conventional ASR
systems, several performance monitoring (PM) techniques have
been well-developed to monitor performance by looking at tri-
phone posteriors or pre-softmax activations from neural net-
work acoustic modeling. However, strategies for monitoring
more recently developed end-to-end ASR systems have not yet
been explored, and so that is the focus of this paper. We
adapt previous PM measures (Entropy, M-measure and Auto-
encoder) and apply our proposed RNN predictor in the end-to-
end setting. These measures utilize the decoder output layer
and attention probability vectors, and their predictive power
is measured with simple linear models. Our findings suggest
that decoder-level features are more feasible and informative
than attention-level probabilities for PM measures, and that M-
measure on the decoder posteriors achieves the best overall pre-
dictive performance with an average prediction error 8.8%. En-
tropy measures and RNN-based prediction also show competi-
tive predictability, especially for unseen conditions.
Index Terms: End-to-End Speech Recognition, Performance
Monitoring

1. Introduction
In recent years, significant improvement for conventional au-
tomatic speech recognition (ASR) has been achieved via ad-
vancements with Deep Neural Networks (DNNs). The main
paradigm for an ASR system is the so-called hybrid approach,
which involves training a DNN to predict context dependent
phoneme states (or senones) from the acoustic features. How-
ever, if test data comes from a very different domain than DNN
training data, it is possible for the recognizer to fail without any
warning, e.g., confident prediction of incorrect labels. Predict-
ing these failures is the goal of the work that follows. Humans
are often aware of the uncertainty of decisions they are making
[1]. Performance monitoring (PM) techniques aim for the same
goal - to determine the quality of a system’s output - based only
on the behavior of the system and without any knowledge of the
underlying truth. An effective PM measure could be useful in
a number of applications [2, 3, 4, 5, 6, 7, 8, 9], such as multi-
stream selection scenario [3, 4, 5, 6, 7, 8, 9] or semi-supervised
training [2].

Unlike conventional ASR, end-to-end speech recognition
approaches are designed to directly output word or character
sequences from the input audio signal. This model subsumes
several disjoint components in the hybrid ASR model (acous-
tic model, pronunciation model, language model) into a single
neural network. As a result, all the components of an end-to-end
model can be trained jointly to optimize a single objective. Two

dominant end-to-end architectures for ASR are Connection-
ist Temporal Classification (CTC) [10, 11, 12] and attention-
based encoder-decoder models [13, 14] . A joint CTC/Attention
framework was proposed in [15, 16, 17] to take advantage of
both architectures within a multi-task scheme. The joint model
was shown to provide state-of-the-art end-to-end results for sev-
eral benchmark datasets [17, 18].

This paper aims to explore the PM techniques applicable
for an end-to-end framework. In the hybrid approach, tri-phone
posterior distributions and their corresponding pre-softmax ac-
tivations are typically treated as PM features. Averaged entropy
over temporal frames was proposed as a confidence measure in
stream-selection [3, 19]. Mean temporal distance on posteriors
estimates the performance by capturing the divergence of any
two frames over several time spans [20, 21]. Reconstruction er-
ror of an auto-encoder trained on pre-softmax features was also
used as the selection criterion in a multi-stream system [22, 23].

In the end-to-end setting, there are two levels of probability
distributions: attention weights and decoder posteriors. Instead
of temporal posteriors in the conventional case, each probability
distribution corresponds to a character-level prediction. There-
fore, we must adapt the techniques used for hybrid systems to
the joint CTC/attention model. Moreover, inspired by the suc-
cess of discriminatively-trained DNNs, we propose using a Re-
current Neural Network (RNN) regression model trained to di-
rectly predict performance. Our analyses demonstrate strong
correlations between PM measures and true performance, in-
dicating that end-to-end ASR systems are indeed amenable to
effective monitoring.

This paper is organized as follows: Section 2 explains the
joint CTC/Attention model. The description of data configura-
tion is in Section 3. Experiments with results and analyses are
presented in Section 4. Finally, we conclude in Section 5.

2. End-to-End Architecture
The joint CTC/Attention model is designed to directly map T -
length acoustic features X = {xt ∈ RD|t = 1, 2, ..., T} in D
dimensional space to an L-length letter sequence C = {cl ∈
U|l = 1, 2, ..., L} where U is a set of distinct letters. The
attention-based structure solves the ASR problem as a sequence
mapping by using an encoder-decoder architecture. Joint train-
ing with CTC is added to help enforce temporally monotonic
behavior in the attention alignments.

The overall end-to-end architecture is shown in Fig. 1.
The encoder is shared by both the attention and CTC networks.
Bidirectional Long Short-Term Memory (BLSTM) layers are
utilized to model the temporal dependencies of the input se-
quence. The frame-wise hidden vector ht at frame t is derived
by encoding the full input sequence X:

ht = Encoder(X) (1)
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Figure 1: Joint CTC/Attention End-to-End Architecture

In the attention-based network, the letter-wise context vector
rl is formed as a weighted summation of frame-wise hidden
vectors ht using a content-based attention mechanism:

rl =
∑T

t=1
altht, alt = ContentAttention(ql−1, ht) (2)

where ql−1 is the previous decoder state, and alt is the atten-
tion weight, which can be considered a soft-alignment of ht for
cl. An LSTM-based decoder outputs the character-level con-
ditional probability distribution p(cl|c1, ..., cl−1, X) for multi-
task training and joint decoding.

During inference, the joint CTC/Attention model performs
a label-synchronous beam search, which jointly predicts the
next character by considering a CTC network and an attention
decoder. No external language model is involved in this work.
The most probable letter sequence Ĉ given the speech input X
is computed as:

Ĉ = arg max
C∈U∗

{λ log pctc(C|X) + (1− λ) log patt(C|X)}

(3)

where we can directly estimate the attention posterior distribu-
tion patt(C|X) using the chain rule:

patt(C|X) =

L∐
l=1

p(cl|c1, ..., cl−1, X). (4)

In this work, we apply PM techniques on three kinds of
features to predict the CERs: attention distributions {alt},
decoder posterior distributions p(cl|c1, ..., cl−1, X), and their
pre-softmax activations.

3. Data
We conduct all our experiments based on the Wall Street Jour-
nal (WSJ) corpus [24] and its variants with additional noises or
reverberation conditions. Table 1 summarizes various databases
that are used in our experiments. For end-to-end ASR, the
clean WSJ SI-284 corpus and Aurora4 multi-condition train-
ing data are used in multi-style training. The Aurora4 set [25]
contains simulated recordings of WSJ utterances in 14 different
acoustic conditions, varying noise types and channel conditions.
WSJ dev93 and Aurora4 dev set serve as the validation set for
ASR training. We also use the same data configuration to train
the auto-encoder. For the RNN predictor, in order to see data
with a reasonable balance across different CERs, we use clean
WSJ SI-84 together with its two artificially noise-corrupted ver-
sions, Aurora4 and CHiME4-Sim. CHiME4-Sim [26] consists
of single-channel WSJ data with four additive noises.

Table 1: Datasets for experiments with CER (%) of Test set

Task Dataset

Train
ASR WSJ(SI-284), Aurora4
AE WSJ(SI-284), Aurora4
RNN WSJ(SI-84), Aurora4, Chime4-Sim

Dev
Linear Regr WSJ, Aurora4, Chime4-Sim

Test
All Tasks WSJ (5.7%) Aurora4 (14.5%)

Chime4-Sim (52.2%) Dirha-Sim (68.2%)
Chime4-Real (59.0%) Dirha-Real (70.7%)
Reverb (41.6%)
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Figure 2: Histogram of CERs in various datasets

To evaluate the predictability of each PM measure, a lin-
ear regression model is applied to map between PM scores and
truth performance. The regression model is computed accord-
ing to development sets from WSJ, Aurora4 and CHiME4-Sim.
We refer the data to train the ASR and linear regression model
as Train and Dev, respectively. Fig. 2(a) and Fig. 2(b) show his-
tograms of utterance CERs for both sets. Performance of Dev
is more widely spread out than Train. We test the effectiveness
of PM measures with data from two different domains. Seen
test domains include evaluation sets from WSJ, Aurora4 and
CHiME4-Sim which are drawn from the same domains as ASR
and PM training; Unseen test domains consist of evaluation sets
from CHiME4-Real [26] (real noisy recordings), Reverb-Sim
[27] (simulated reverberation), Dirha-Sim [28] (simulated re-
verberation) and Dirha-Real [28] (real reverberated recordings).
All the test data together are referenced as Test, with utterance
CERs shown in Fig. 2(c).

4. Experiments
4.1. Experiment Setup

In the end-to-end model, the encoder contains four BLSTM lay-
ers, each with 320 cells in both directions, followed by a 320-
unit linear projection layer. A content-based attention mecha-
nism with 320 attention units follows. The decoder is a one-
layer unidirectional LSTM with 300 cells. We use 52 distinct
labels at the decoder softmax layer, including 26 English letters
and additional special tokens (i.e., punctuations and sos/eos).

The model is implemented using the Pytorch backend on
ESPnet [29], an end-to-end speech processing toolkit. The
model is optimized using the AdaDelta algorithm with a mini-
batch size of 15. We also apply a unigram label smoothing
technique [30] to avoid over-confident predictions. The beam
width is set to 30 for all results. For jointly training with CTC
and attention objectives, λ = 0.2 is used for training, and
λ = 0.3 for decoding. All results are reported as CER. In all



Figure 3: Performance Monitoring Score versus Truth Performance (CER)

experiments, 80-dimensional mel-scale filter-bank coefficients
with additional 3-dimensional pitch features served as the input
features. Attention distributions, decoder posteriors, and pre-
softmax features are extracted during joint decoding. Decoding
results of each Test set are shown in Table. 1.

4.2. Entropy

In the hybrid ASR framework, it was observed [3, 19] that the
discriminative power of a clean phoneme classifier decreases
for input speech with reduced signal-to-noise ratios. As the
phoneme posteriors tend to be more uniformly distributed, en-
tropy was proposed as a measure of uncertainty. In end-to-end
ASR, which has no phoneme distributions, we investigate if en-
tropy on either the attention probabilities or the decoder poste-
riors could be a reasonable indicator of model performance.

Entropy is first computed on the character-level distribution
p(cl|c1, ..., cl−1, X).

Entropy(p) = −
K∑

k=0

p(k) log p(k) (5)

where pl is either the attention probabilities al or decoder pos-
teriors. The utterance-level score is obtained by averaging en-
tropy scores over all predictions.

Escore =
1

L

L∑
l=0

Entropy(pl) (6)

Note that the dimension of the attention distribution is equal to
the number of time frames T at encoder output, which varies
per utterance. So, we normalize this entropy by its upper bound
log(T ) for a consistent range [0, 1]. Fig. 3(a)(b) show scat-
ter plots of entropy scores versus truth CERs on Test, where
each point in the plot represents one utterance. A linear model

CER = a ∗ PM + b learned to minimize the mean squared
error over Dev is also shown. Entropy scores on the decoder
output clearly demonstrate a linear relationship with true per-
formance, while linear correlation for attention-level distribu-
tions holds only for error rates less than 0.5, resulting in larger
prediction error overall.

4.3. M-Measure: Mean Character Distance

The Mean Temporal Distance (MTD) or M-Measure was pro-
posed to show the mean distance of pair-wise probability dis-
tributions from DNN outputs [21]. Symmetric KullbackLeibler
divergence was selected as a distance metric for distributions p
and q, which are each posteriors from different time frames.

D(p,q) =
K∑

k=0

p(k) log
p(k)

q(k)
+

K∑
k=0

q(k) log
q(k)

p(k)
(7)

A high MTD score indicates a greater difference between p and
q, meaning the model is choosing different output classes at dif-
ferent times. In noisy conditions or other cases with low model
confidence, the distributions at different times should be more
similar. In MTD, M-Measure often needs to sample frame pairs
more than 200 ms apart due to phonetic co-articulation; for
shorter time spans, small divergence could be caused by high
confidence in the same phoneme.

In end-to-end framework, we propose Mean Character Dis-
tance (MCD), adapted from mean temporal distance. Since
each probability estimate p in the attention or decoder poste-
rior corresponds to a character prediction, the distance measure
is suitable even for adjacent frames without concern for a co-
articulation effect. So, we take the mean of distance over all
pairs from various windows {4l} = {1, 2, 3, 4, 5}.

Mscore =

∑
{4l}

∑L
l=4lD(pl−4l, pl)∏
{4l}(L−4l)

(8)
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Figure 4: Configurations of two PM techniques

Equal weights are applied to all pairs, instead of assigning
higher weights for more distant pairs, as with MTD. As shown
in Fig. 3(c)(d), similar to the observations for entropy measures,
PM on decoder posteriors is better for predicting CERs than PM
with attention probabilities. Furthermore, MCD is more linearly
correlated with CERs than seen with entropy at attention level.

4.4. Auto-Encoder

Mean squared error (MSE) of auto-encoder outputs was pro-
posed in [23] to measure the mismatch between train and test
data as an indicator of DNN performance. The auto-encoder is
trained to minimize the reconstruction error of the DNN pre-
softmax activations from training data. The previous study il-
lustrated that if a data vector is sampled from training data dis-
tribution, the corresponding reconstruction error should be low,
while a high error could be observed in a mismatched condition.

In the end-to-end network, it is natural to apply this tech-
nique to 52-dimensional decoder pre-softmax activations. The
auto-encoder used here is a five-layer 512-unit feed-forward
neural network, including a 24-dimensional bottleneck layer in
the middle as shown in Fig. 4(a). PM score per utterance is de-
rived as average MSE across all frames. In the scatter plot Fig.
3(e), reconstruction error prediction is consistent with the fitted
line for CERs lower than 0.4, while the prediction error diverges
for utterances with higher CERs. It might be the case that since
the auto-encoder only sees the ”good” data in training, there is
lack of knowledge of how ”bad” data looks.

4.5. RNN Predictor

In this work, we propose an RNN-based regression model
which directly maps pre-softmax features of one utterance into
error rates in the range of CER [0,+∞]. The model is depicted
in Fig. 4(b). Two BLSTM layers of 320 units are employed to
handle temporal dependencies of inputs. Each layer subsamples
every other output frame. A mean-pooling layer is then used on
top of BLSTM outputs to formulate one summary vector per ut-
terance, which is fed into a linear layer of 300 units and an out-
put layer with one Rectified Linear unit (ReLu). The model is
optimized with MSE loss between predictions and truth CERs.
Intuitively, the PM score is derived from the model output. The
scatter plot in Fig. 3(f) shows that the predictions are well-
aligned with the fitted line from linear regression. Since it is a
direct estimation of CER, the ideal fit should be CER = PM .
The derived model using Dev is CER = 0.98 ∗ PM + 0.06,

Table 2: Mean Square Error (×10−2) of linear regression
trained on performance monitoring techniques. All results are
reported on test sets.

Entropy MCD
Dataset/Domain Dec Att Dec Att AE RNN

Seen (ASR, PM)
WSJ 0.17 0.88 0.25 0.77 0.82 0.29
Aurora4 0.44 1.43 0.47 1.14 1.12 0.74

Seen (PM only)
CHiME4-Sim 1.13 5.11 1.07 1.87 2.68 1.01

Unseen
CHiME4-Real 1.50 5.77 1.24 2.02 3.62 1.05
Reverb-Sim 0.94 3.42 0.78 2.20 1.88 1.50
Dirha-Sim 2.23 6.75 1.16 2.05 6.07 1.43
Dirha-Real 2.77 11.80 1.26 2.39 6.97 1.25

All Together(deg=1) 1.02 3.83 0.79 1.67 2.49 1.02
All Together(deg=2) 0.99 2.36 0.79 1.71 2.52 0.99
All Together(deg=3) 0.99 1.66 0.74 1.63 2.20 0.99
All Together(deg=4) 0.86 2.13 0.70 1.33 2.41 0.99
All Together(deg=5) 2.44 5.03 0.77 1.35 3.36 0.99

which is slightly offset and tilted from the ideal case.

4.6. Overall Results

Table 2 summarizes MSEs of linear regression models trained
on various PM techniques across different Test sets. It is worth
noting that decoder features work more effectively than atten-
tion probabilities in all cases for predicting CERs. Entropy
gives the lowest MSEs for WSJ and Aurora4, domains which
have been seen in ASR training. The RNN predictor achieves
best performance in CHiME4-Sim (not surprising, since this do-
main was seen in RNN predictor training) and real recordings
from CHiME4-Real and Dirha-Real, domains not seen in any
training stage at all. MCD measure performs the best at the two
unseen simulated domains with reverberant conditions. Over-
all, entropy, MCD, and RNN prediction all provide reasonably
good CER predictions, with average prediction errors (square
root of MSE) of 10.1%, 8.8% and 10.1%, respectively, where
MCD outperforms the rest of PM measures across all test set.

5. Conclusions
In this work, we investigated four different performance mon-
itoring techniques on attention and decoder features from an
end-to-end ASR model. Our results show that PM measures
on decoder features are more effective for predicting true error
rates than PM measures on attention probabilities. Entropy and
MCD are very simple, effective measures where MCD shows
the overall best performance. And while auto-encoder methods
might be suitable to handle mismatch condition within a certain
level of data corruption, an RNN-based regression model shows
potential in the direction of performance estimation using deep
neural network. Overall, these results show great promise for
performance prediction of end-to-end ASR models.
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