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Abstract—Synthetic data generation for optical character
recognition (OCR) promises unlimited training data at zero
annotation cost. With enough fonts and seed text, we should
be able to generate data to train a model that approaches or
exceeds the performance with real annotated data. Unfortunately,
this is not always the reality. Unconstrained image settings, such
as internet memes, scanned web pages, or newspapers, present
diverse scripts, fonts, layouts, and complex backgrounds, which
cause models trained with synthetic data to break down. In
this work, we investigate the synthetic image generation problem
on a large multilingual set of unconstrained document images.
Our work presents a comprehensive evaluation of the impact
of synthetic data attributes on model performance. The results
provide a recipe for synthetic data generation that will help guide
future research.

I. INTRODUCTION

Optical character recognition (OCR) performance on docu-
ment images has increased significantly with the rise of neural
network architectures [1] [2] [3]. Many of these advances
have occurred in constrained settings [4], where the images
are drawn from a single domain and language, such as
book scans or scene text. The performance of these systems
often deteriorates when presented with document images from
an unconstrained setting that includes multiple domain and
languages. Unconstrained document images can include maps,
forms, web pages, and social media images (see Table I for
examples). This challenging setting is often multilingual and
can include text over complex backgrounds, multiple fonts,
lighting changes, and occlusions, and systems unprepared for
this diversity typically degrade in performance. As an example,
Table V shows that the character error rate (CER) for the pre-
trained Tesseract best LSTM models more than doubles when
evaluated on our unconstrained Chinese test set.

One of the primary challenges with creating better models
for the unconstrained scenario is the lack of annotated training
data. Neural models require tens of thousands of annotated
text line images that are both expensive and time consuming
to produce.

Synthetic image generation has emerged as a solution for the
OCR training data problem [5] [6]. Given a few fonts and some
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seed text, we can produce an unlimited number of training
images. However, this generic approach to synthetic models
breaks down when the attributes of the synthetic images do
not match the test conditions.

In this work we investigate the synthetic image generation
problem on a large multilingual set of unconstrained document
images. We ask the questions that many researchers have faced
when attempting to train an OCR model with synthetic data:

o How many fonts should we use?

o What styles or attributes need to be applied to the text?
o How many images are needed for training?

o What seed text should we use?

To answer these questions, we conduct detailed experiments
in this unconstrained setting on two challenging languages:
Chinese and Russian. Our results provide a recipe for synthetic
data generation that will help guide other researchers.

Synthetic data has been used in training OCR systems [7]
[8] [9] at the character, word, line, and document level. It
has also been applied to a variety of OCR domains such
as CAPTCHA [10], face recognition [11] [12], biomedical
research [13], and scene text [14] [3] [15]. The synthetic tool
developed by [14] was specifically designed to render scene
text images. Their approach takes a scene text image and then
uses the scene layout during text placement in order to render
more realistic in-scene text.

The work of [16] provides one of the most detailed descrip-
tions of the attributes used for synthetic data generation. They
generate word-level images using a variety of fonts, colors,
distortions, and image blending.

Synthetic generation has also been applied to document-
level images in the work of [17]. Given a real document
image, they apply a semi-automatic approach to extract font,
background, and document layout. These attributes can then be
used to generate realistic synthetic documents using random
seed text.

Our work makes the following contributions to the OCR
community:

1) First, we evaluate synthetic data generation on a large
multilingual set of unconstrained document images.
2) Next, we develop a recipe for synthetic data generation



TABLE I
EXAMPLE UNCONSTRAINED IMAGES (REUSE LICENSE)
RUSSIAN SOCIAL MEDIA (ToP), CHINESE DIAGRAM (BOTTOM)
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based on a comprehensive evaluation of font, style, seed
text, and quantity.

3) Finally, we provide a direct comparison of model per-
formance for real vs synthetic training data.

II. APPROACH
A. Synthetic Generation

Most synthetic data generation tools render images at the
word or line level. Given a list of seed text and a list
of fonts, an image is generated for each seed input. This
simple approach appears to work for many constrained text
scenarios that contain uniform fonts and simple backgrounds.
However, this approach begins to break down in unconstrained
settings, such as with the complex layouts, diverse fonts, and
backgrounds seen in the example images in Table I.

To overcome these limitations, we use a synthetic generation
tool that has the ability to render multiple line images into
complete documents, allowing us to construct templates that
capture the complex document attributes not available in a
simple line image. As an example, we can pad the bounding
box around a given line and capture pieces of characters from
lines above and below the current line. This provides a real

document image artifact that occurs when the recognizer is
run downstream of a text detector.

To create the data itself, the rendering engine of a web
browser is used to convert HTML documents into annotated
images. By constructing synthetic documents using CSS and
HTML we can easily control layout, font, style, and back-
grounds. The approach allows us to generate large numbers
of synthetic documents with the types of variability that are
found in real document images. JavaScript is used to extract
the locations of text regions in the HTML document and create
ground truth bounding box annotations.

B. System Description

To train our OCR system, we follow the setup of [2]
[18] using an end-to-end neural model. This model combines
convolutional neural networks (CNNs) for feature extraction
with long-short term memory (LSTM) recurrent networks for
sequence modeling.

We force a fixed image input height into the CNN-based
feature extractor, which is based on the VGG architecture
[19] that was used in ImageNet ILSVRC-2014 [20]. The
network also includes fractional max-pooling layers [21] that
are biased towards input width in order to keep more features
in this dimension. The output from the final convolution
layer is passed to a fully-connected layer, which reduces
dimensionality before input into a stacked bidirectional LSTM.

Output from the LSTM layers is passed into a fully-
connected layer, which matches the size of the input character
set. We apply the connectionist temporal classification (CTC)
loss [22] to allow for segmentation-free training and then use
a greedy arg-max for decoding at test time.

C. Font Attributes

One of the key challenges for synthetic generation is iden-
tifying a set of fonts that match the diversity of the data. We
investigate whether a small number of fonts can provide this
coverage or if a breadth of fonts is required to match the
characteristics of the data set. Our approach was to first train
models using synthetic data generated using a single font and
then incrementally increase the number of fonts for subsequent
experiments.

We gathered hundreds of open-source fonts and then sepa-
rated them by the supported language. One of the challenges
with open-source fonts is that many support only a subset
of the true character set and often do not follow standards for
identifying glyph support. Our approach was to gather as many
open-source fonts as possible and then render each unique
character from our seed set to validate the content of the
font packages. Table II shows the unique characters from the
training set rendered with two different fonts. During synthetic
generation, a random font is selected for each seed sentence,
with a back-off font available for instances where a character
glyph is not available.

D. Style Attributes

Style defines the attributes that are used to render our seed
text into synthetic images. This includes items such as font



TABLE I

FONTS: ALEGREYA-REGULAR (LEFT), LOBSTER-REGULAR (RIGHT)
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TABLE III
SYNTHETIC ATTRIBUTES

Font / Background
Color

Background image

Pad

NOEE3 225 60106 u epwe

Rotate

color, background color, and background images. We also
include text attributes, such as padding and rotation, into our
style definition. The goal is to quantify the impact of each of
these synthetic attributes on model training. Table III provides
examples of 4 types of style applied to Cyrillic text.

E. Seed Attributes

Given the diversity of our training set, we investigate
whether the underlying domain of the seed text can impact
synthetic data training. The synthetic approach loads text from
a source corpus and randomly selects a sentence for each
image.

To generate synthetic images, we use seed text sentences
drawn from news, web crawl, Wikipedia, and YOMDLE
(defined below) annotations. Table IV provides examples of
the different seed types. The news domain provides formal text
sentences and often includes a more technical vocabulary. The
web crawl is an informal corpus, which is often unstructured
but covers a wide domain of topics. The Wikipedia corpus is
a semi-formal corpus that includes both short facts and long
descriptive sentences. This corpus also covers a wide domain
and includes many technical terms.

III. DATA SETS

The evaluation data for this work is drawn from the SLAM
data set, which was collected by the University of Maryland
Center for Advanced Studies of Language (CASL). It includes
at least 500 images for each of 33 languages, with 25 unique
scripts. A subset of these images for five of the languages
were boxed at the line image level and transcribed.

In our synthetic experiments, we focus on the Chinese and
Russian languages, two of the transcribed languages, in order
to demonstrate results on two distinct scripts and a large
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EXAMPLE CHINESE SEED TEXT AND SYNTHETIC IMAGE
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Fig. 1. SLAM Chinese character distribution

diverse set of characters. The Chinese evaluation set contains
over 10 thousand annotated line images of simplified Chinese.
Figure 1 provides a breakdown of the characters in the Chinese
SLAM data set. The figure shows that we have over 2700
unique Han characters. These line images have an average
height of 35 pixels and an average width of 230 pixels. The
Russian evaluation set contains over 11 thousand annotated
lines with an average height of 28 pixels and an average width
of 310 pixels. Figure 2 provides a breakdown of the Russian
character distribution. Examples of the types of images in this
data set include scans of web pages, newspapers, receipts,
phone books, forms, maps, menus, and social media captures.
The text in these images provide a diverse set of fonts and
complex backgrounds.

The training data used in our real data experiments is
drawn from data gathered and transcribed by Yet One More
Deep Learning Enterprise, which we will call the YOMDLE
dataset. This data set is drawn from a similar domain as
the SLAM set and includes scans of newspapers, web pages,
presentations, and social media captures. The set has a slightly
higher resolution than the SLAM set and includes over one
thousand images with annotated and transcribed lines for each
of 8 languages, including our evaluation languages of Russian
and Chinese. The Chinese collection contains over 13 thousand
transcribed line images with an average height of 52 pixels and
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Fig. 2. SLAM Russian character distribution

an average width of 503 pixels. The Russian set contains over
14 thousand images with an average height of 45 pixels and
an average width of 659 pixels.

The seed text for synthetic image generation is derived
from either the annotations of real text images or corpora
used by linguistic researchers. The real image seed text was
taken from the transcribed YOMDLE text and images were
generated using various fonts and backgrounds. To evaluate
the contributions of various seed text domains, we also gen-
erated synthetic data using text gathered from news, web,
and Wikipedia crawls. Each of the these linguistic data sets
includes over 1 million sentences collected within the last 10
years.

IV. EXPERIMENTS

We use the open source VistaOCR library! to conduct our
experiments. The CNN-based system consists of 7 convolution
layers. Each layer consists of a 2D-convolution with 3x3 filter
kernels followed by Batch-Norm and RELU. A fractional max-
pool layer occurs after layers 2 and 4, with the output ratio
set at .5 for height and .7 for width. A fully connected layer
provides a bridge to the 3-layer bidirectional LSTM and a
final fully connected layer has an output size of the training
alphabet size. The model is trained using warp CTC loss and
an Adam optimizer. The initial learning rate is set to le-3 and
is reduced by a factor of 10 when the loss plateaus. All images
are resized to a fixed height of 30 pixels with a variable width
that maintains aspect ratio.

At training time we randomly apply up to three augmenta-
tions to each image. These augmentation are generated using
the ImgAug library2 and include blur, noise, sharpen, emboss,
pixel dropout, channel inversion, brightness, hue, saturation,
contrast, and gray-scale. Models are trained with a mini-batch
size of 32 images where batches are sorted in increasing image
width order. All models are trained on NVIDIA 1080 GPU

Uhttps://github.com/isi-vista/VistaOCR
Zhttps://github.com/aleju/imgaug

cards, using a single GPU. Results are evaluated using Word
Error Rate (WER) for Russian and Character Error Rate (CER)
for Chinese.

A. Baseline

As a comparison for the synthetic training experiments,
baseline scores are established by training over real data. Lan-
guage specific models are trained using the approximately 1K
documents and 15K line images for the annotated YOMDLE
Russian and Chinese data. During training, 10% of the line
images are reserved for validation. Table V shows the baseline
results for evaluation on the SLAM data sets. We also provide
comparison results to the pre-trained Tesseract best LSTM
trained models to show the challenges of this unconstrained
setting. These numbers serve as a reference point for training
with a reasonable amount of similar (YOMDLE) or mis-
matched (Tesseract) real images.

TABLE V
BASELINE RESULTS ON SLAM DATA

Chinese (CER) | Russian (WER)
13.3 9.1
28.0 13.2

Training data
YOMDLE (Real)
Tesseract® (Best LSTM)

B. Style Attributes

In this set of experiments, font and style attributes are
isolated to determine the impact on synthetic training data.
The attributes used during the experiments are font count,
font size, font color, background color, background images,
padding, and rotation. For each experiment, all but one of the
attributes is held fixed. The font attribute is selected from a
list that includes over 60 fonts for Chinese and more than 600
Russian fonts. Font size is derived from a range of 12 to 24
point. Both font color and background color are selected from
a standard color palette. The background image list includes
over 30 thousand non-text images. For padding, a random pixel
value between -1 and 6 is added to the image height and width.
Finally, the text is rotated between -2 and +2 degrees.

For the font count experiments, models are trained using
synthetic images rendered using 1, 5, and 60+ fonts. The
experimental results are shown in Table VI. The single font
used for both Russian and Chinese was a Noto Serif style
font with regular thickness. The five font list includes fonts
from both the Serif and Sans Serif families and both bold
and regular thickness. The 60+ font list includes over 60
fonts for Chinese and more than 600 Russian fonts. As would
be expected, the results show that more fonts are always
better, but a somewhat surprising result is that the model still
performs well when trained with as few as 5 fonts.

In the fixed font size experiment, a 12 point font is used for
all training data and the remaining attributes are randomly
selected, as described previously. The results in Table VII
show that font size has a large impact on the overall model
training.



TABLE VI
FONT RESULTS

Attribute | Chinese (CER) | Russian (WER)
1 Font 28.2 33.3
5 fonts 17.8 17.4
All fonts 16.3 12.7

The non-color experiment maintains a black font on a white
background for all training images. This change causes a
degradation of the model, since the test corpus includes a
large number of images with complex backgrounds. However,
somewhat surprising is that the removal of background images
causes little change in the model performance.

TABLE VII
STYLE RESULTS

Attribute Chinese (CER) | Russian (WER)
Fixed Font Size 23.0 19.7
No Color 21.1 16.9
No Background 17.2 13.0
All Styles 16.3 12.7

The removal of padding causes a large degradation in model
performance, as seen in Table VIII. Bounding boxes in the
evaluation set were annotated by multiple language experts
and resulted in variations in the text cropping. This mirrors
what would be expected from an upstream text detection
analytic, and the results show simulating this effect in training
is important for test-time performance.

Rotation did not affect the results as much as expected.
Generally, rotating the training images is an augmentation that
provides a good boost to the training process. In our scenario,
the impact is decreased since the text detection process extracts
bounding box sub regions and then axis aligns.

TABLE VIII
AUGMENTATION RESULTS

Attribute Chinese (CER) | Russian (WER)
No Padding 23.0 14.0
No Rotation 19.2 12.5
All Augmentations 16.3 12.7

C. Seed Type Attribute

Seed type experiments help to determine if the domain of
the seed text matters for synthetic model training. The web,
news, and wiki seed text consists of 15K randomly selected
lines from the corresponding language and domain corpora of
the Leipzig Collection [23]. Models were trained using 30k
images, created by using 2 instances from each seed line.
The synthetic images were generated using all fonts, styles,
padding, rotations, and online augmentation techniques. Our
results in Table IX show that domain does have an impact on
synthetic models. Presumably, the web domain outperforms
models trained from news and wiki seed text. The informal
nature of the web collection more closely matches the diverse
test set collection of document images.

TABLE IX
SEED TYPE RESULTS

Training data | Chinese (CER) | Russian (WER)
Web 13.9 12.9
News 23.0 14.4
Wiki 16.4 15.1
YOMDLE 16.3 12.7

D. Instance Count

The instance count experiments look at how the number of
generated instances impact a synthetic model. Given a seed
set of approximately 15K lines images, can we improve the
models by generating multiple instances of the same seed text.

In this experiment, the 15K YOMDLE language specific
annotations are used as the seed text. Synthetic lines images
are generated using 2, 10, and 30 instances of each line of
seed text. Each instance is generated using a random selection
of the 30+ fonts, font colors, background colors/images, crops,
and rotations. The results in Table X show that increasing the
number of instances from 2 to 10 has a small impact on the
Russian data, but had a much larger impact on the Chinese
data. There appears to be little gain from increasing the count
beyond 10 instances. The largest decrease in error rate is
for Chinese, which is a result of having additional training
examples for the larger character set.

TABLE X
INSTANCE COUNT RESULTS

Training Count | Chinese (CER) | Russian (WER)
30K (2x) 16.3 12.7
150K (10x) 10.4 10.3
450K (30x) 9.1 10.0

V. CONCLUSIONS

We presented a recipe for synthetic image generation, shown
in Table XI, that removes the guess work in how to train
a purely synthetic model. Our approach is validated on a
large diverse set of document images and on the challenging
languages of Russian and Chinese. The results show that with
a relatively small number of fonts and seed text, a model can
be trained that is competitive or outperforms a model trained
on real images.

TABLE XI
SYNTHETIC OCR RECIPE
Ingredients Measurements
How many fonts should | As little as 5 fonts will provide good per-
we use? formance, but more fonts are better.

What styles or attributes
need to be applied to the
text?

How many images are
needed for training?
What seed text should
we use?

Padding, font color, and background color
provide the largest impact.

30k - 150k lines will match or pass real data
performance.
Web data provides the most diverse domain.




In the future, we plan to employ this effective synthetic data
training generation recipe to enable research in downstream
natural language processing tasks such as named entity recog-
nition and machine translation. In these cases, the existing
annotated text can be used to seed the synthetic generation,
resulting in images automatically labeled for the downstream
task. Furthermore, we will explore extending the synthetic tool
to model effects like motion blur in order to facilitate OCR in
videos.
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