
An Evaluation of Graph Clustering Methods for Unsupervised Term Discovery

Vince Lyzinski, Gregory Sell, Aren Jansen

Human Language Technology Center of Excellence & Center for Language and Speech Processing
The Johns Hopkins University, Baltimore, MD USA

{vlyzins1, gsell, aren}@jhu.edu

Abstract

Unsupervised term discovery (UTD) is the task of automati-
cally identifying the repeated words and phrases in a collection
of speech audio without relying on any language-specific re-
sources. While the solution space for the task is far from fully
explored, the dominant approach to date decomposes the dis-
covery problem into two steps, where (i) segmental dynamic
time warping is used to search the speech audio for repeated
acoustic patterns, and (ii) these individual repetitions are par-
titioned into word/phrase categories using graph clustering. In
this paper, we perform an unprecedented evaluation of a wide
range of advanced graph clustering methods for the UTD task.
We conduct our study in the evaluation framework of the Zero
Resource Speech Challenge. We find that, for a range of
features and languages, modularity-based clustering improves
UTD performance most consistently, often by a wide margin.
When paired with out-of-language deep neural net bottleneck
features, we find performance near that of a high-resource UTD
system.
Index Terms: Unsupervised term discovery, graph clustering,
zero resource speech challenge

1. Introduction
The lack of transcribed speech for a given language or domain
(the so-called zero resource setting) precludes both the training
of highly accurate recognizers as well as any downstream tech-
nologies that depend on lexical or phonetic tokenizations. The
task of unsupervised term discovery (UTD) attempts to sidestep
the need for word transcripts and pronunciation dictionaries
by automatically discovering clusters of repeated words and
phrases in untranscribed audio [1, 2, 3, 4, 5, 6]. While the re-
sulting tokenizations do not explicitly carry meaning (each type
receives a unique generic identifier), UTD has been demon-
strated to be a useful preprocessing step for downstream sum-
marization [7, 8], topic identification [9, 10, 8], spoken docu-
ment retrieval [11, 12], and speaker recognition [13] technolo-
gies. Moreover, recent studies have demonstrated the value of
automatically discovered words as weak supervision for acous-
tic model training [14, 15, 16, 17].

Park and Glass [1] introduced the UTD problem and pro-
posed a first solution, which involved an O(n2) search for
closely repeating acoustic patterns using their segmental dy-
namic time warping (S-DTW) algorithm. The discovered rep-
etitions were subsequently used to construct a graph, where
nodes represented intervals of speech and edges reflect which
intervals were acoustically similar. Finally, the resulting word
and phrase categories (which we refer to as pseudoterms, due to
their indefinite nature) were identified using a fast graph clus-
tering method proposed by Newman [18].

Since this original work, several improvements were pro-
posed, including methods to improve scalability of the S-DTW
search [19, 4] and word discriminability of the segment acoustic
similarity metric [20]. However, none of these subsequent ef-
forts have focused on improving the graph clustering procedure,
with only Newman’s algorithm and simple connected compo-
nents clustering having been considered to date. Moreover,
while the improvements in computational efficiency of S-DTW
allowed processing of much larger corpora (100s of hours), this
leads to even bigger graphs that make clustering algorithm scal-
ability an even more important factor.

With these considerations in mind, this paper presents a
comprehensive evaluation of several state-of-the-art graph clus-
tering algorithms for UTD systems. Of critical importance is
algorithm scalability, as even small corpora can generate graphs
with millions of nodes and tens of millions of edges. In addi-
tion, the unsupervised nature of the problem also favors algo-
rithms with fewer parameters to tune since in real applications
any validation must be performed manually. We use the Zero
Resource Speech Challenge (Track 2) framework [21], which
includes evaluation sets for English and Xitsonga, the latter of
which serves as a veritable zero resource test language. We con-
sider the both the evaluation metrics used in [4], as well as the
comprehensive array of UTD performance metrics provided by
the challenge. This enables not only an internal comparison of
the clustering methods with a fixed graph construction method-
ology, but also allows external comparisons to other UTD sys-
tems evaluated by other challenge participants. We begin with
a detailed description of our graph construction methodology.

2. Graph Construction
All experiments in our study employ the scalable S-DTW-based
term discovery system procedure presented in [4]. This system
takes as input a collection of speech documents and produces
a list of P scored interval pairs P = {(x1i , x2i , si)}Pi=1, where
si ∈ [0, 1] is a normalized acoustic similarity between the in-
tervals and each interval xji is specified by a triple (f j

i , a
j
i , b

j
i)

indicating the audio file f j
i , start time aji , and end time bji . Once

this output has been obtained, the next step is to transform P
into a weighted undirected graph G = (V,E), where V is the
vertex set and E is the weighted edge set.

The goal of our graph clustering procedure is to partition
the individual intervals in P into clusters that contain multiple
utterances of (ideally) a single word or phrase type and where
each type is present in as few clusters as possible. Thus, for each
of the individual intervals xji that comprises half of a pair in P
we define a corresponding vertex in vji in V , such that |V | =
2·P . Now, if a given term occurs k times in the speech, the S-
DTW procedure will produce as many as k(k − 1)/2 matches
that generate as many as k(k − 1) vertices. To successfully

cluster all of these vertices into a single pseudoterm cluster, we
must introduce two classes of edges: acoustic and overlap.

Acoustic edges result from DTW similarity of distinct re-
gions of speech and are derived from P . Specifically, for each
interval pair in (x1i , x

2
i , si) ∈ P , we introduce an edge be-

tween vertices v1i and v2i of weight 1/(1+exp[−(si−τa)/20]),
where τa is a free parameter. At this point, our graph has
a ladder structure, consisting of P connected components of
2 vertices each. We then further augment the graph by in-
troducing a set of overlap edges that indicate to what degree
two intervals overlap in the same source audio file. Formally,
we insert one edge between vertices vji and vlk if the corre-
sponding intervals (f j

i , a
j
i , b

j
i) and (f l

k, a
l
k, b

l
k) are contained

in the same file (i.e., f j
i = f l

k) and have non-zero over-
lap in time. The weight of each overlap edge is defined as
1/(1+exp[−(F (xji , x

l
k)−τo)/20]), where τo is a free parameter

and the fraction overlap F (xji , x
l
k) can be efficiently computed

as max(0, 1− r(xji , x
l
k)), where

r(xji , x
l
k) =

bji − a
j
i + blk − alk

max(bji , b
l
k)−min(aji , a

l
k)
.

Note that since the two types of edges are measuring different
types of vertex similarity with distinct distributional properties,
it is necessary to treat them separately in the downstream graph
clustering procedures. This is handled with separate τa and τo
parameters. For each acoustic front-end we consider in our ex-
periments, we create one master graph for each evaluation lan-
guage by applying a very conservative threshold (i.e. far be-
low considered values for τa and τo) on both the acoustic and
overlap edges solely for the purpose of keeping the graph sizes
manageable. Additionally, we only keep intervals of at least 0.5
seconds in duration.

3. Graph Clustering Methods
In addition to simply thresholding the graph edges (at 0.5) and
using the connected components (referred to as ConnComp be-
low), we consider four state-of-the-art (both in efficacy and scal-
ability) graph clustering procedures: the modularity-based algo-
rithms of [22] and [23], the label propagation algorithm of [24],
and the information flow based algorithm of [25].

3.1. Modularity-Based Clustering

Modularity is a widely applied metric for measuring the per-
formance of graph clustering algorithms [26, 27, 28]. Heuris-
tically, the modularity of a clustering measures the fraction of
edge weights that fall within clusters as opposed to across clus-
ters. More precisely, given a weighted graph G = (V,E) and a
clustering of V into m components {c1, c2, . . . , cm}, the mod-
ularity (suitably normalized below to take a value in [−1, 1]) is
defined as

Q =
1

2w

∑
i,j

[
Ei,j −

wiwj

2w

]
δ(ci, cj), (1)

where wi =
∑

j Ei,j is the sum of the weights of edges in-
cident to vertex i, w = 1

2

∑
i,j Ei,j is the total weight of the

network, ci is the cluster component vertex vi is assigned to,
and δ(ci, cj) = 1 if ci = cj and 0 otherwise. If the modularity
is close to 1 (resp., -1), then a significantly larger fraction of the
total edge weights are within (resp., between) clusters as op-
posed to between (resp., within) clusters. If the fraction of edge

weights within clusters is what we would expect from a ran-
dom network with the given vertex degrees, the modularity will
be close to 0. While exactly optimizing modularity is NP-hard
[28], numerous highly scalable algorithms have been proposed
in the literature to find a clustering that approximately optimizes
Eq. 1. We consider two of the most prominent modularity-based
clustering methods: the Louvain algorithm [22] and the algo-
rithm of Clauset, Newman, and Moore [23, 29] (referred to as
FastGreedy in our experiments).

The Louvain algorithm proceeds in two iterated phases.
Phase one begins with every vertex assigned to a separate clus-
ter. The algorithm then sequentially considers each vertex
vi ∈ V and, for each vj ∈ NG(vi) := {vk ∈ V |Ei,k 6= 0},
evaluates the gain in modularity achieved by removing vi from
its present cluster and putting it into the cluster containing vj .
Vertex vi is then placed in the cluster which maximizes this
gain, or kept in its present cluster if no gain is possible. This
process is then iteratively and sequentially applied on all ver-
tices until no further increases in modularity can be achieved.
In the second phase, the resulting clusters are collapsed to sin-
gle vertices, with edge weights between vertices computed by
summing the edge weights between the two pre-collapsed clus-
ters. The two phases are then iterated on the collapsed graphs
until the vertices all belong to a single cluster. The resulting
clustering is essentially hierarchical, and we use the clustering
in the hierarchy that maximizes modularity in G to cluster our
graph. The Louvain algorithm is unsupervised and very fast,
feasibly running on extremely large graphs (order ≈ 109 ver-
tices in [22]).

The clustering algorithm of Clauset, Newman, and
Moore [23, 29] is a more efficient implementation of Newman’s
algorithm [18] used by Park and Glass [1], but proceeds simi-
larly. Beginning with every vertex assigned to a separate clus-
ter, the algorithm efficiently calculates the change in modular-
ity that would result from merging each pair of clusters. The
pair whose merging would result in the maximum modularity
are then merged, and the algorithm is iterated on the resulting
clusters. Again, the output of the algorithm is essentially a hi-
erarchical clustering, and we use the clustering in the hierarchy
that achieves the maximum modularity in G. The algorithm is
fully unsupervised and very fast; indeed, in the setting of many
sparse, real-world (unweighted) networks, the algorithm has a
nearly linear run time O(|E| log2 |V |) [23] (compared to the
O(|V | · |E|) runtime of [18]).

3.2. Label Propagation and Information Flow

We also explore two state-of-the-art clustering algorithms
based on non-modularity clustering heuristics. The first is a
weighted variant of the label propagation algorithm of [24],
which we refer to as LabelProp below. The heuristic be-
hind the algorithm is very simple. If vertex vi has neighbors
NG(vi) = {vi1 , vi2 , . . . , vik}, with corresponding cluster la-
bels c1, c2, . . . , ck, then vi determines its cluster assignment by
maximizing

k∑
j=1

δ(cj , c)Ei,ij (2)

over all possible cluster labels c. With this in mind, the algo-
rithm proceeds as follows. Initialize with every vertex being
assigned to a separate unique cluster. Iteratively and sequen-
tially over all vertices, each node updates its cluster assignment
by maximizing Eq. 2 over cluster labels c. The cluster assign-

ment updates are performed asynchronously, and the order in
which the vertices’ cluster memberships are updated in each it-
eration of the algorithm is random. In the unweighted setting,
each iteration of the algorithm has runtime O(|E|), and excel-
lent performance is often achieved with few iterations [24]. La-
bel propagation is fully unsupervised.

Lastly, we consider InfoMap, the information flow based
algorithm of [25, 30]. Heuristically, the InfoMap algo-
rithm exploits the duality between data compression and pat-
tern/structure extraction to cluster the vertices in the graph by
minimizing the description length of information flows on the
graph. More precisely, given a clustering C of the vertices of
the graph intom clusters, the algorithm uses a two-level coding
scheme to efficiently encode the trajectory of a random walk on
the graph as follows. Each cluster is given a unique code name
and different Huffman coding schemes [31] are used to name
the vertices within each cluster. Each cluster is then assigned
a unique exit code to indicate when the random walk exits the
cluster. The average description length of a step of the random
walk on the network can then be written as

L(P) = qH(C) +
m∑
i=1

piH(Ci), (3)

where q is the probability that the random walk moves to a
different cluster at any given step, H(C) is the entropy of the
cluster code names, H(Ci) is the entropy of the within cluster
code names (including the exit code), and pi is the proportion of
within cluster moves that occur within cluster i, plus the prob-
ability of exiting cluster i. The InfoMap algorithm employs a
greedy search algorithm and simulated annealing to approxi-
mately minimize Eq. 3 over all clusterings C. This flow based
clustering procedure is also fully unsupervised as implemented
and scales well to very large graphs.

4. Experiments
The above clustering methods were evaluated within the Zero
Resource Speech Challenge (Track 2) [21], which includes two
separate speech corpora. First, the challenge uses a subset of the
Buckeye corpus, consisting of 5 hours of English conversational
speech. This data is microphone recorded and sampled at 16
kHz. The second corpus consists of 2.5 hours of microphone
recordings of Xitsonga (a South African language) prompted
speech, also sampled at 16 kHz.

4.1. Features

For each language, three sets of features were considered: per-
ceptual linear prediction (PLP), short-time frequency domain
linear prediction (FDLPS), and bottleneck features (BNF). The
39-dimensional PLP features (13 + deltas + double deltas) were
also used for the official challenge baseline systems, while the
15-dimensional FDLPS features (5 + deltas + double deltas) fil-
ter spectral detail encoded in higher-order cepstral coefficients
to improve speaker independence as demonstrated in [32]. Both
PLP and FDLPS features are raw acoustic features and do not
involve any language resources or training.

The BNFs were computed from a 5-layer deep neural net-
work (DNN) trained on 1,500 hours of out-of-domain Fisher
English telephone speech. Each layer included 5,000 units
with 2-norm maxout nonlinearities, and the final softmax output
layer targeted 7,600 clustered context-dependent HMM states
(senones). The initial input to the net was a 9-frame context
window of MFCCs, and the resulting 60-dimensional BNFs

Table 1: Average runtime (in seconds) on the FDLPS Buckeye
graph (136,324 vertices, 578,329 edges). Averages are com-
puted over all edge weightings considered.

Algorithm igraph Routine Runtime (s)
FastGreedy cluster fast greedy 27.9
InfoMap cluster infomap 293.9
LabelProp cluster label prop 3.3
Louvain cluster louvain 4.1

should encode the acoustic structure relevant to English. While
the BNFs are therefore utilizing in-language (though channel-
mismatched) data for English (Buckeye), the Xitsonga results
use only out-of-language resources for BNFs, which remains a
legitimate zero-resource scenario.

4.2. Metrics

We consider the performance of these clustering methods in
light of several UTD metrics. First, we evaluate according to
performance on the subset of long-duration words, which are
assumed to be primarily content words that are of higher impor-
tance for downstream applications such as topic modeling and
keyword discovery [4]. The systems considered in this work
were designed for these tasks, and as a result, evaluating on
content words is the most appropriate metric. Using as targets
all same-type pairs of reference words in the evaluation set that
are at least 0.5 seconds, we measured precision and recall of
the same-type pairs predicted by our clustering algorithms. The
performance is summarized using the F-score.

Next, we evaluated according to the Zero Resource Speech
Challenge metrics [21], which considers discovery of all phone
n-grams of varying length (down to order 3). Performance is
measured in terms of normalized edit distance (NED); total cov-
erage; precision, recall, and F-score for the n-gram matching
task; and, type, token, and boundary metrics for word segmen-
tation tasks. Note that since our system only hypothesizes repe-
titions of at least 0.5 seconds, a recall ceiling is implicit. More-
over, since our UTD system does not provide a single compre-
hensive segmentation, the “matching” metrics are the primary
focus. We report all challenge metrics for completeness.

4.3. Results

4.3.1. Runtimes

For all clustering algorithms evaluated, we used the efficient
implementations provided in the open-source network analysis
package igraph [33]. Table 1 lists the average processing time
for each of the methods applied to the largest graph we gener-
ated in our experimentation. The flow-based InfoMap algorithm
is by far the slowest, with runtimes an order of magnitude larger
than the nearest competitor. The modularity-based Louvain al-
gorithm, which we will see is of the most accurate methods,
nearly matches the fastest runtime measured.

4.3.2. Results on Content Words

Results for the content-word F-scores are shown in Table 2. Op-
timal τa and τb parameters for Buckeye were selected based on
performance on the Xitsonga corpus, and vice versa for the Xit-
songa system, so the parameter selections were fair. It is im-
mediately evident from these scores that the modularity-based
clustering methods (Louvain and FastGreedy) offer improve-
ments over ConnComp in all cases, and provide the top perfor-

Table 2: Content-word F-scores (%) for the Buckeye and Xitsonga corpora with different feature types. Buckeye-BNF scores are
italicized to represent the use of in-language training data in this case.

Buckeye Xitsonga
PLP FDLPS BNF PLP FDLPS BNF

ConnComp 16.3 19.9 42.7 2.9 13.5 25.7
InfoMap 15.0 24.3 26.1 2.8 21.4 11.6
LabelProp 13.0 21.1 19.7 2.2 16.1 7.9
Louvain 23.3 26.6 46.7 4.9 18.0 40.0
FastGreedy 23.3 28.1 47.0 4.3 17.2 29.6

Table 3: Zero Resource Speech Challenge evaluation systems (CC=ConnComp, FG=FastGreedy, L=Louvain, plus parameters τa and
τo) and scores (%) for Buckeye (top) and Xitsonga (bottom). BNF scores are italicized to indicated the use of in-language supervision.

Clustering NLP Matching Type Token Boundary
Method NED Cov. P R F P R F P R F P R F

Baseline - 21.9 16.3 39.4 1.6 3.1 6.2 1.9 2.9 5.5 0.4 0.8 44.1 4.7 8.6
Topline - 0 100 98.3 18.5 31.1 50.3 56.2 53.1 68.2 60.8 64.3 88.4 86.7 87.5
PLP CC, 0.87, 0.8 0.773 25.5 14.6 2.3 4.0 4.7 2.5 3.3 4.2 0.6 1.0 39.6 7.5 12.7
FDLPS CC, 0.9, 1.0 0.612 80.2 6.5 3.5 4.6 3.1 9.2 4.6 2.4 3.5 2.8 35.4 38.5 36.9
BNF FG, 0.9, 1.0 0.364 46.7 12.9 5.1 7.2 2.3 2.9 2.6 1.9 0.7 1.0 31.7 14.2 19.6

Clustering NLP Matching Type Token Boundary
Method NED Cov. P R F P R F P R F P R F

Baseline - 12 16.2 69.1 0.3 0.5 3.2 1.4 2 2.6 0.5 0.8 22.3 5.6 8.9
Topline - 0 100 100 6.8 12.7 15.1 18.1 16.5 34.1 39.7 40.4 66.6 91.9 77.2
PLP FG, 0.87, 0.9 36.1 30.2 30.6 0.6 1.2 3.0 2.7 2.8 2.0 0.9 1.2 19.4 11.2 14.2
FDLPS CC, 0.9, 1.0 43.2 89.4 21.2 3.8 6.5 4.9 18.8 7.8 2.2 12.6 3.8 18.8 64.0 29.0
BNF L, 0.93, 1.0 34.1 67.6 13.3 7.4 9.5 2.6 6.0 3.6 1.5 2.3 2.0 14.8 29.5 19.7

mance in all cases except Xitsonga with FDLPS features. Be-
tween the two languages, we notice that the PLP performance
is a great deal worse on Xitsonga than English, while perfor-
mance is on a more similar order between the languages for
FDLPS and BNF.

For Buckeye, it is not at all surprising that BNFs give the
best overall performance, considering the use of copious in-
language training data. Moreover, the majority of the improve-
ments come from the features themselves, as there is very lit-
tle difference between ConnComp, Louvain, and FastGreedy
scores. However, for Xitsonga, the use of Louvain offers a
large improvement over the already relatively high ConnComp
score. The 40% F-score usings BNFs with Louvain falls only
14% relative behind the best performance of in-language BNFs
on Buckeye. The BNFs utilize no in-language training data for
Xitsonga, and so this result combining the BNFs with modular-
ity clustering is extremely encouraging.

Finally, we note that even though the parameters for these
systems were selected fairly based on out-of-language perfor-
mance, oracle selections were separately analyzed. In the vast
majority of cases, the fairly-selected parameters performed at or
near the level of oracle-selected parameters. The overall stabil-
ity between languages is encouraging for realizing these gains
in zero-resource application settings.

4.3.3. Official Zero Resource Speech Challenge Results

The official Zero Resource Speech Challenge evaluation met-
rics are shown in Table 3 for Buckeye (top) and Xitsonga (bot-
tom). These results are also shown in comparison to the per-
formance of the official baseline (a UTD system with PLP feat-
ues and connect component clustering) and topline (a Bayesian
word segmenter [32] applied to reference phonetic transcripts)
for each corpus. As was the case with the content-word scores,
τa and τo parameters were selected according to performance

on the opposite corpus, in this case based on the matching F-
score. In both cases, the general patterns are the same as seen
in Table 2, in that FDLPS performance is better than PLP, and
BNF is best overall (in terms of matching F-score). In both
cases, these improvements appear to be largely related to an in-
crease in recall. Also similar to the content-word score analysis,
these performances were found to be stable compared to oracle
selection. Finally, the BNF results are again very encouraging
for the Xitsonga corpus. In this case, the matching F-score of
the BNF system (which uses Louvain) has recovered over 75%
of the performance gap between the topline and baseline.

5. Conclusions
Several UTD systems were evaluated both in terms of content
words and the full set of phone n-grams, and several conclusions
can be drawn from these experiments. First, FDLPS features are
a preferable to PLP as an acoustic feature for UTD. However,
the data-driven modeling in BNFs trained on out-of-language
speech are superior to either acoustic feature for this task, and
therefore appear to be the optimal choice. It was also consis-
tently the case that clustering the identified candidate terms can
be significantly improved by utilizing Louvain or FastGreedy,
both modularity-based methods. Given its efficiency, Louvain
is the optimal combination of speed and accuracy. In the case of
BNFs on Xitsonga data, the resulting system was near the per-
formance of an in-language system on Buckeye. Experiments
also showed that optimal parameter and feature selection for
these methods was relatively stable across languages, which is
essential for use in true zero resource scenarios.

6. Acknowledgments
The authors thank Daniel Garcia-Romero of Johns Hopkins
University for providing the neural network for BNF extraction.

7. References
[1] A. Park and J. R. Glass, “Unsupervised pattern discovery in

speech,” IEEE T-ASLP, vol. 16, no. 1, pp. 186–197, 2008.

[2] V. Stouten, K. Demuynck et al., “Discovering phone patterns in
spoken utterances by non-negative matrix factorization,” Signal
Processing Letters, IEEE, vol. 15, pp. 131–134, 2008.

[3] A. Muscariello, G. Gravier, and F. Bimbot, “Audio keyword ex-
traction by unsupervised word discovery,” in Interspeech, 2009.

[4] A. Jansen and B. V. Durme, “Efficient spoken term discovery us-
ing randomized algorithms,” in Proc. ASRU, 2011.

[5] O. Räsänen, “A computational model of word segmentation
from continuous speech using transitional probabilities of atomic
acoustic events,” Cognition, vol. 120, no. 2, pp. 149–176, 2011.

[6] N. Vanhainen and G. Salvi, “Pattern discovery in continuous
speech using block diagonal infinite HMM,” in Acoustics, Speech
and Signal Processing (ICASSP), 2014 IEEE International Con-
ference on. IEEE, 2014, pp. 3719–3723.

[7] A. Jansen, K. Church, and H. Hermansky, “Towards spoken term
discovery at scale with zero resources,” in Interspeech, 2010.

[8] M. Siu, H. Gish, A. Chan, W. Belfield, and S. Lowe, “Unsuper-
vised training of an hmm-based self-organizing unit recognizer
with applications to topic classification and keyword discovery,”
Computer Speech & Language, vol. 28, no. 1, pp. 210–223, 2014.

[9] M. Dredze, A. Jansen, G. Coppersmith, and K. Church, “NLP on
spoken documents without ASR,” in Proc. of EMNLP, 2010.

[10] T. J. Hazen, M.-H. Siu, H. Gish, S. Lowe, and A. Chan,
“Topic modeling for spoken documents using only phonetic in-
formation,” in Automatic Speech Recognition and Understanding
(ASRU), 2011 IEEE Workshop on. IEEE, 2011, pp. 395–400.

[11] J. White, D. Oard, A. Jansen, J. Paik, and R. Sankepally, “Us-
ing zero-resource spoken term discovery for ranked retrieval,” in
Proc. of NAACL-HLT, 2015.

[12] J. Wintrode, G. Sell, A. Jansen, M. Fox, D. Garcia-Romero, and
A. McCree, “Content-based recommender systems for spoken
documents,” in Proc. ICASSP, 2015.

[13] A. Jansen, D. Garcia-Romero, P. Clark, and J. Hernandez-
Cordero, “Unsupervised idiolect discovery for speaker recogni-
tion,” in Acoustics, Speech and Signal Processing (ICASSP), 2014
IEEE International Conference on. IEEE, 2014, pp. 1675–1679.

[14] A. Jansen and K. Church, “Towards unsupervised training of
speaker independent acoustic models,” in Interspeech, 2011.

[15] A. Jansen, S. Thomas, and H. Hermansky, “Weak top-down
constraints for unsupervised acoustic model training,” in IEEE
ICASSP, 2013.

[16] G. S. T. Schatz and E. Dupoux, “Phonetics embedding learning
with side information,” in Proc. SLT, 2014.

[17] H. Kamper, M. Elsner, A. Jansen, and S. Goldwater, “Unsuper-
vised neural network based feature extraction using weak top-
down constraints.” in Proc. ICASSP. IEEE, 2015.

[18] M. E. Newman, “Fast algorithm for detecting community struc-
ture in networks,” Physical review E, vol. 69, no. 6, p. 066133,
2004.

[19] Y. Zhang and J. R. Glass, “An inner-product lower-bound esti-
mate for dynamic time warping,” in Acoustics, Speech and Signal
Processing (ICASSP), 2011 IEEE International Conference on.
IEEE, 2011, pp. 5660–5663.

[20] K. Levin, K. Henry, A. Jansen, and K. Livescu, “Fixed-
dimensional acoustic embeddings of variable-length segments in
low-resource settings,” in Automatic Speech Recognition and Un-
derstanding (ASRU), 2013 IEEE Workshop on. IEEE, 2013, pp.
410–415.

[21] M. Versteegh et al., “The zero resource speech challenge 2015,”
in Proc. of Interspeech, 2015.

[22] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre,
“Fast unfolding of communities in large networks,” Journal of
Statistical Mechanics: Theory and Experiment, vol. 2008, no. 10,
p. P10008, 2008.

[23] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community
structure in very large networks,” Physical review E, vol. 70, no. 6,
p. 066111, 2004.

[24] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time al-
gorithm to detect community structures in large-scale networks,”
Physical Review E, vol. 76, no. 3, p. 036106, 2007.

[25] M. Rosvall and C. T. Bergstrom, “Maps of random walks on com-
plex networks reveal community structure,” Proceedings of the
National Academy of Sciences, vol. 105, no. 4, pp. 1118–1123,
2008.

[26] M. E. J. Newman and M. Girvan, “Finding and evaluating com-
munity structure in networks,” Physical review E, vol. 69, no. 2,
p. 026113, 2004.

[27] M. E. J. Newman, “Modularity and community structure in net-
works,” Proceedings of the National Academy of Sciences, vol.
103, no. 23, pp. 8577–8582, 2006.

[28] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer,
Z. Nikoloski, and D. Wagner, “On modularity clustering,” Knowl-
edge and Data Engineering, IEEE Transactions on, vol. 20, no. 2,
pp. 172–188, 2008.

[29] M. E. J. Newman, “Analysis of weighted networks,” Physical Re-
view E, vol. 70, no. 5, p. 056131, 2004.

[30] M. Rosvall, D. Axelsson, and C. T. Bergstrom, “The map equa-
tion,” The European Physical Journal-Special Topics, vol. 178,
no. 1, pp. 13–23, 2009.

[31] D. A. Huffman, “A method for the construction of minimum re-
dundancy codes,” Proceedings of the IRE, vol. 40, no. 9, pp.
1098–1101, 1952.

[32] A. Jansen, E. Dupoux, S. Goldwater, M. Johnson, S. Khudan-
pur, K. Church, N. Feldman, H. Hermansky, F. Metze, R. C. Rose
et al., “A summary of the 2012 JHU CLSP Workshop on zero
resource speech technologies and models of early language ac-
quisition.” in ICASSP, 2013, pp. 8111–8115.

[33] G. Csardi and T. Nepusz, “The igraph software package for
complex network research,” InterJournal, Complex Systems, vol.
1695, no. 5, pp. 1–9, 2006.

