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ABSTRACT
Learning sparse representations using pretrained language models
enhances the monolingual ranking effectiveness. Such represen-
tations are sparse vectors in the vocabulary of a language model
projected from document terms. Extending such approaches to
Cross-Language Information Retrieval (CLIR) using multilingual
pretrained language models poses two challenges. First, the larger
vocabularies of multilingual models affect both training and infer-
ence efficiency. Second, the representations of terms from different
languages with similar meanings might not be sufficiently similar.
To address these issues, we propose a learned sparse representation
model, BLADE, combining vocabulary pruning with intermediate
pre-training based on cross-language supervision. Our experiments
reveal BLADE significantly reduces indexing time compared to its
monolingual counterpart, SPLADE, on machine-translated docu-
ments, and it generates rankings with strengths complementary to
those of other efficient CLIR methods.
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1 INTRODUCTION
Creating sparse representation models using Pretrained Language
Models (PLMs) such as BERT has proven to be effective and rela-
tively efficient for monolingual retrieval, particularly with English
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Figure 1: The tradeoff between MAP and indexing times, av-
eraged over six CLIR collections, using English title queries.

content (where MS MARCO [5] can be used for fine-tuning). The
core idea behind these methods, of which SPLADE [20] is presently
best, involves projecting queries and documents onto sparse vec-
tors in a high-dimensional space defined by the PLM vocabulary.
This represents query and document terms using a small number of
features that can be stored in a standard inverted index to support
efficient ranking at query time. Lexical expansion can be done by
assigning non-zero weights to terms that did not actually appear
in the text but could have, thereby addressing some of the vocabu-
lary mismatch faced by lexical matching models such as BM25. In
this paper, we present BLADE, a Bilingual Lexical And Document
Expansion model for Cross-Language Information Retrieval (CLIR),
where text in one language is retrieved by a query in another lan-
guage. In particular, we focus on the unique challenges Multilingual
PLMs (MPLMs) pose when building a sparse neural CLIR model.

Our focus on techniques using MPLMs, rather than on first using
Machine Translation (MT) to convert each document into the query
language, is driven by our concern for efficiency, not just at query
time but also at indexing time. As Figure 1 illustrates, BLADE is
roughly an order of magnitude faster at indexing time than MT,
as seen by the horizontal gap between DT-SPLADE (which uses
MT in indexing) and BLADE-C (which does not). In this paper,
we focus on this trade-off between scalability to larger collections
on the one hand, which we operationalize as the time required
for indexing, and retrieval effectiveness on the other, which we
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measure as Mean Average Precision (MAP) or Recall@100 (R@100).
The main contributions of this paper are:

(1) We propose a new CLIR model, BLADE, that uses a pruned
mBERT vocabulary to improve training and inference.1

(2) We introduce a pretraining step to learn cross-language term
associations from aligned text.

(3) We show that pretraining on comparable corpora yields re-
sults comparable to pretraining on parallel corpora.2

(4) We analyze the trade-offs between the indexing speed and
ranking effectiveness of different methods.

2 SPARSE NEURAL INDEXING
In this section, we review prior work on neural methods for improv-
ing sparse neural indexing. Neural cross-encoder methods, while
being highly effective, might not be suitable for interactive use with
large collections. This has led to two broad lines of work. In one
approach, neural methods are used to enhance the indexing vocab-
ulary, improving the recall of efficient first-stage search techniques
that rely on an inverted index [14, 51]. Less efficient techniques can
then be used in subsequent stages to rerank highly ranked docu-
ments from first-stage retrieval. In the second approach, query and
document processing is separated, so only the query representation
needs to be computed at query time [30, 31]. Both approaches move
some processing to indexing time, thus generating a trade space in
which training speed, indexing speed, query latency, and ranking
effectiveness are in tension. The techniques we compare in this
paper all have query latency short enough for interactive use and
have been well-analyzed in monolingual applications, including
for learned sparse models [34, 40–42, 44]. However, their index-
ing speed varies over a broad range, which is important because
indexing speed impacts real world usability.

2.1 Lexical Expansion Models
Pre-BERT sparse neural retrieval models [72] generated query and
document vectors using L1 regularization to permit inverted in-
dexing that is efficient at query time. The advent of BERT led to
different forms of neural ranking models, including those that gen-
erate sparse weights for query and document terms [4, 10, 14, 20,
22, 38, 43, 74]. These models can be applied to generate weights
only for terms that appear in the text, or in a more general lexical
expansion setting that allows weights for terms that do not appear
in the text. Working with cross-language input sequences renders
the first approach unsuitable, so instead we focus on the lexical
expansion setting. In a monolingual lexical expansion setting, ex-
isting approaches either rely on off-the-shelf document expansion
models such as doc2query [50] or TILDEv2 [73] to generate ad-
ditional terms, or they use the vocabulary space of the PLMs for
expansion [4]. Among the models built off of the latter framework,
SPLADE [20, 22] has been shown to generalize to both in- and
out-of-domain task settings, and therefore, we choose SPLADE as
the inspiration to design its cross-language cousin, BLADE.

1https://github.com/hltcoe/BLADE
2https://github.com/hltcoe/BLADE/bi-passages

2.2 SPLADE
SPLADE [20, 22] is a bilingual lexical expansion model that gen-
erates |𝑉 |-dimensional term vectors for queries and documents,
where the weights represent the relative importance of each term.
Given a query 𝑞 and document 𝑑 , SPLADE, initialized with a PLM
𝜂, computes the similarity score 𝑠 (𝑞, 𝑑) between them as:

𝑠 (𝑞, 𝑑) = 𝜂 (𝑞)𝑇𝜂 (𝑑) (1)

Let𝑉T denote the output vocabulary space of the SPLADEmodel.
For a given document text sequence 𝑡 of length 𝑁 , SPLADE uses the
masked language model head (MLM) from the pretrained encoder
to get term weights for every document subword. Specifically, for
a document (or a query) subword 𝑡𝑖 , the model generates the term
weights𝑤𝑖 𝑗 for the candidate output subword 𝑡 𝑗 ∈ 𝑉T as:

𝑤𝑖 𝑗 = 𝜙 (ℎ𝑖 )𝑇 𝑒 𝑗 + 𝑏 𝑗 (2)

where 𝜙 is a combination of a linear layer with GeLU activation,
with LayerNorm applied to the contextualized embedding ℎ𝑖 of
𝑡𝑖 . Here 𝑒 𝑗 is the 𝑗-th row of the decoder matrix of the Language
Model (LM) head, and 𝑏 𝑗 is the token-level bias.

Once we have |𝑉 |-dimensional vectors for each subword in the
document, an aggregated vector for the document is generated by
max pooling over the target vocabulary dimensions as:

𝑤 𝑗 = max
𝑖

log
(
1 + ReLU(𝑤𝑖 𝑗 )

)
(3)

A similar explanation follows for generating aggregate query
vectors. Given the aggregate query and document vectors, the sim-
ilarity score can be computed using Eq. (1). Sparsity is enforced
in the document and query representations by combining ReLU
activation and FLOPS [55] regularization.

SPLADE [22] uses a contrastive ranking loss to train a retrieval
model. Given a query 𝑞𝑖 , a relevant document 𝑑+

𝑖
, a BM25 sampled

non-relevant document 𝑑−
𝑖
, and in-batch documents {𝑑−

𝑗
} that we

treat as not relevant, the contrastive ranking loss is:

Lrank = − log
𝑒𝑠 (𝑞𝑖 ,𝑑

+
𝑖 )

𝑒𝑠 (𝑞𝑖 ,𝑑
+
𝑖
) + 𝑒𝑠 (𝑞𝑖 ,𝑑

−
𝑖
) +∑

𝑗 𝑒
𝑠 (𝑞𝑖 ,𝑑−

𝑗
) (4)

In SPLADE, the ranking loss was trained on MS MARCO training
triples. Subsequent versions [20, 21] introduced distillation loss
and a hard negative mining step. SPLADEv2 [20] leverages Margin-
MSE loss [26] for distilling knowledge from a teacher cross-encoder
trained on a monolingual corpus to the student SPLADE model.
Once a model is trained using a combination of ranking and dis-
tillation loss, SPLADEv2 additionally mines for harder negatives
using the trained model to conduct another round of training.

2.3 SPLADE-X
SPLADE-X [49] generalizes the SPLADE model for CLIR applica-
tions. SPLADE-X uses a multilingual BERT encoder to generate
aggregate term vectors in a similar manner to SPLADE, given a
query and document in different languages. One difference, how-
ever, is the use of a top-𝑘 masking [70] scheme as a way to induce
sparsity instead of FLOPS regularization. This technique only pre-
serves the dimensions corresponding to the top-𝑘 terms with the
highest weights and sets the remaining weights to zero.

https://github.com/hltcoe/BLADE
https://github.com/hltcoe/BLADE/bi-passages
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SPLADE-X uses a popular cross-language transfer learning ap-
proach known as translate-train to learn term associations for
CLIR matching. English queries are paired with passages machine-
translated from English to the document language, and a contrastive
ranking loss is learned as in Eq. (4). This approach relies onmachine-
translated MS MARCO corpora to generate these pairs, specifically
mMARCO [8], and multiple neural CLIR models have been trained
on the same or similar corpora [27, 36, 48]. Furthermore, SPLADE-
X uses a multilingual distillation approach, where a monolingual
SPLADE model is chosen as the teacher to distill the knowledge
to a multilingual SPLADE-X. Instead of Margin-MSE loss as in
SPLADEv2, SPLADE-X minimizes a KL-divergence loss to match
the probability distribution coming from the teacher and student
models, as introduced in Yang et al. [70]. SPLADE-X does not in-
clude SPLADEv2’s hard negative mining step.

3 BLADE
The architecture of BLADE is derived from its monolingual coun-
terpart, SPLADEv2 [20], and its cross-language variant, SPLADE-X.
We preserve many of the modeling choices from SPLADE-X, but
we modify, a) vocabulary pruning; and b) intermediate pretraining.

3.1 Vocabulary Pruning
Let 𝑉Q and 𝑉D be the subword vocabularies of the query and doc-
ument languages, respectively. In the original SPLADE, the output
vocabulary was the vocabulary of a monolingual BERT language
model, i.e., 𝑉T = 𝑉Q = 𝑉D with |𝑉T | = 30522. Vocabulary sizes of
multilingual PLMs such as mBERT (119k dimensions) or XLM-R
(250k dimensions) are much larger, presenting several challenges.
First, the increased number of dimensions impacts sparsity and,
thus, the efficiency of the model. Additionally, the larger vocabu-
lary |𝑉 | leads to increased memory use during training, and higher
inference costs at indexing time and at query time. Vocabulary
selection has been well studied in the context of MT [18, 28, 61] to
trade between translation latency and output quality, as measured
using automatic metrics such as BLEU [54].

To address these issues, SPLADE-X [49] limited the output to
query-language terms (i.e.,𝑉T = 𝑉Q ). That essentiallymade SPLADE-
X an encoder-only MT model that translated document language
terms to query language terms, albeit with overgeneration and
without a target language model. For BLADE, we opt instead for a
pruned bilingual language model [1], mBERTen-xx. This bilingual
model consists of a pruned mBERT vocabulary corresponding to
the subword terms in both the query and document languages (i.e.,
𝑉T = 𝑉Q ∪ 𝑉D ). Only embeddings corresponding to the pruned
vocabulary are kept; all others are discarded. This reduces model
size, as most parameters of PLMs are stored in the input/output
embedding matrix. Across the six document languages we use for
evaluation, the reduction in vocabulary size leads to, on average, a
36.5% reduction in the number of parameters relative to the original
mBERT model. With an effective batch size of 128 on 8 V100 GPUs,
total training time is reduced by 30%. With a batch size of 64 on
one V100 GPU, the reduction in inference time averages 55%.

3.2 Intermediate Pretraining
In CLIR, vocabulary mismatch between queries and documents
poses a significant challenge for multilingual PLMs. To match
terms in different languages, MPLMs must generate similar rep-
resentations for words in different languages that have similar
meanings. Previous studies have shown that off-the-shelf MPLMs
are often undertrained, and thus require fine-tuning for the CLIR
task [39]. To address this, SPLADE-X used translate-train to learn
cross-language term associations from translated mMARCO pairs.
However, machine-generated translations can introduce transla-
tionese [66], which has been shown to affect cross-language transfer
due to translation artifacts [3]. Using a translate-train approach, the
model learns term associations based only on translated document
texts rather than from what would have been their natural written
forms. To address this limitation, we propose an intermediate pre-
training step that uses aligned text pairs in the query and document
languages, both expressed in more natural written forms.

3.2.1 Intermediate Pretraining Objective. Consider a set of aligned
pairs [(𝑃Q

1 , 𝑃D
1 ), (𝑃Q

2 , 𝑃D
2 ), . . . , (𝑃Q

𝑛 , 𝑃D
𝑛 )] in languages Q and D.

We compute contrastive ranking loss similarly to Eq. (4). Treating
𝑃Q
𝑖

as the query, 𝑃D
𝑖

as the relevant document, and a set of in-batch
documents 𝑃D

𝑗
that we treat as non-relevant, we model the loss as:

LQD
CO = − log

𝑒𝑠 (𝑃
Q
𝑖
,𝑃D

𝑖
)

𝑒𝑠 (𝑃
Q
𝑖
,𝑃D

𝑖
) +∑

𝑗 𝑒
𝑠 (𝑃Q

𝑖
,𝑃D

𝑗
)

(5)

The similarity score 𝑠 is computed using Eq. (1). With this pre-
training objective, an off-the-shelf mPLM can use aligned human-
written document-language and query-language texts to learn cross-
language term associations. This can serve as a complementary
source of knowledge in contrast to relying solely on machine-
translated passages with the translate-train approach.

We use aWholeWordMasking (WWM) loss in both languagesQ
and D, denoted as LQ

WWM and LD
WWM, respectively. WWMmasks

all subwords for a given word, in contrast to the commonly used
MLM that only masks subwords which sometimes are only part of
a whole word.3 Our overall pretraining loss Lpretrain is:

Lpretrain = LQD
CO + LQ

WWM + LD
WWM (6)

As a design choice, we only update the model parameters associated
with the MLM head, keeping the remaining parameters frozen. Our
motivation was to avoid the catastrophic forgetting problem of
neural networks in general by limiting the number of parameters
we need to update, thereby preserving the original knowledge from
pretraining. We also tried updating all the model’s parameters but
that did not provide any downstream effectiveness gain.

4 EXPERIMENT SETUP
We describe our experiment setup, including test collection, evalu-
ation method, implementation details, and baselines.

4.1 Test Collections & Evaluation
The test collections used in our experiments are from the CLEF 2003
multilingual ad-hoc retrieval track [9] for documents in French (FR),
3For Chinese, we use LTP (https://github.com/HIT-SCIR/ltp) to segment words.

https://github.com/HIT-SCIR/ltp
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Table 1: Test collection statistics. Queries are English with at
least one relevant doc, Passages are as split for BLADE, MT
Passages are splits of English translations for DT-SPLADE.

CLEF 03 NeuCLIR 22
FR IT DE ES ZH RU

Queries 52 51 56 57 47 44
Documents 130K 158K 295K 454K 3,179K 4,628K
Passages 0.5M 0.6M 1.3M 2.1M 18.3M 21,6M
MT Passages 0.5M 0.6M 1.1M 1.7M 13.7M 16.8M

Italian (IT), German (DE), and Spanish (ES), and from the TREC
2022 NeuCLIR track4 for documents in Chinese (ZH)5 and Russian
(RU) [35]. In every case, we use the English title field as the query,
which produces queries with lengths typical of a Web search. Table
1 provides collection statistics. To evaluate effectiveness, we focus
on Mean Average Precision (MAP) and Recall@100 (R@100). For
significance testing, we use a paired t-test (𝑝 < 0.05) with Holm-
Bonferroni multiple test correction for the difference in means.

4.2 Parallel and Comparable Corpora
We explore two sources of aligned text: (1) parallel texts, which are
direct translations; and (2) comparable texts, which convey similar
meanings but may not be direct translations. For sentence-aligned
parallel text, we use a diverse range of OPUS [64] corpora, including
from EuroParl [33], GlobalVoices,6 MultiUN [19], NewsCommen-
tary,7 QED [2], TED [57], UNPC [75], and WMT-News [6].

Prior work has primarily used parallel corpora of aligned sen-
tences to train MT systems. However, the limited context present
in aligned sentences may be suboptimal for fine-tunin a PLM for
CLIR. To test that hypothesis, we created a new passage-aligned
parallel corpus. For each source of bitext, we obtain the original
monolingual corpora in the query and document languages, along
with the sentence alignment file. We then generate a list of aligned
sentences within these documents using the information provided
in the alignment file.8 We then construct overlapping passages,
where each passage is defined as a set of consecutive sentences
from the list of aligned sentences. To ensure homogeneity in the
lengths of aligned passages, we select consecutive sentences such
that the total number of subword tokens does not exceed the maxi-
mum sequence length (256). We follow a similar process to move the
stride by selecting the first sentence beyond 128 subword tokens.

To create aligned comparable passages, we start with CLIRMa-
trix [63], a collection built using Wikipedia’s inter-language links.
CLIRMatrix, originally designed for evaluating CLIR systems, pairs
the title of a Wikipedia article in one language (which modeled
a query) with a ranked list of passages from Wikipedia pages in
some other language on the same topic (which modeled relevant
documents). Passages average about 200 whitespace-separated to-
kens for non-CJK languages; Chinese passages are roughly 600
4https://neuclir.github.io/
5We use the script provided by NeuCLIR organizers to convert traditional Chinese
characters to simplified.
6https://casmacat.eu/corpus/global-voices.html
7https://data.statmt.org/news-commentary/v16/
8We drop sentences that have no aligned counterparts in the other language

Table 2: Statistics of aligned pairs.

FR IT DE ES ZH RU

Parallel Sentences 53.4M 3.2M 3.5M 45.9M 31.2M 43.2M
Parallel Passages 18.2M 1.0M 1.2M 15.8M 11.6M 17.0M
Comparable Passages 1.2M 1.0M 1.2M 1.0M 0.6M 0.8M

characters. Following the procedure used by Yang et al. for C3 [69],
for each language pair en-xx, we identify the highest ranked non-
English passage with a score value 6 in xx for every en query and
then align them with the corresponding highest ranked passage in
en. The two passages are then aligned, and the page title used to
align them is discarded. Table 2 shows corpus statistics.

4.3 Implementation Details
We implement BLADE using the Tevatron toolkit [24], which is built
on top of the HuggingFace Transformers [67] library. To initialize
BLADE, we use a smaller bilingual language model, released by
Geotrend,9 which thus defines our pruned bilingual vocabulary. For
task-specific fine-tuning, we adopt a translate-train approach, using
English queries paired with translations produced using Google
MT that are distributed as mMARCO [8].10 We perform 100,000
steps of fine-tuning with an effective batch size of 256 using 8 V100
GPUs and a learning rate of 1e-5 with the Adam [32] optimizer.
Our maximum query length is 32 tokens, and passage lengths are
limited to 256 tokens. Our BLADE implementation differs from that
described in the SPLADEv2 paper [20] in that like SPLADE-X for
training we use in-batch negative samples rather than the noise
contrastive estimation process for mining hard negative training
examples. As our DT-SPLADE comparison below indicates, the
effect of this change is small (on the order of 2%).

For intermediate pretraining, we use parallel or comparable pas-
sages or parallel sentences, with the pretraining objective in Eq. (6).
We pretrain the model for 200,000 steps with an effective batch size
of 192 on 8 V100 GPUs and a learning rate of 1e-5 using Adam.
When pretraining, the English passage is encoded as the query and
the non-English passage is encoded as the document passage. The
maximum passage length in each language is set to 256 tokens. In
both intermediate pretraining and task-specific fine-tuning, we set
𝑘 to 1% of the total vocabulary size of the corresponding Geotrend
bilingual model. Also, we lowercase queries and documents for
both intermediate pretraining and task-specific fine-tuning.

These configurations yield three BLADE variants: BLADE-S
pretrained on parallel sentences; BLADE-P pretrained on parallel
passages; and BLADE-C pretrained on comparable passages. All
variants then receive task-specific fine-tuning. We refer to any
BLADE model without this pretraining as vanilla BLADE.

For inference, we segment the documents into overlapping pas-
sages of 256 subword tokens with a stride of 128 subword tokens.
We use the Anserini toolkit to index the top-𝑘 passage term weights
generated by BLADE. We then perform retrieval using the indexed
passages and queries generated by BLADE to generate a ranked
list of passages. The final step uses MaxP [7, 15] score aggregation
9An example EN-DE model: https://huggingface.co/Geotrend/bert-base-en-de-cased
10Due to the limited number of queries in the test collections, we utilize an external
collection with relevance judgments for task-specific fine-tuning, while reserving the
test collections solely for evaluation purposes.

https://casmacat.eu/corpus/global-voices.html
https://data.statmt.org/news-commentary/v16/
https://huggingface.co/Geotrend/bert-base-en-de-cased
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to generate a document ranking from a ranked list of passages.11
The primary reason for selecting MaxP is to assess neural models,
trained on passage-level judged collections like MS MARCO, using
document-level judged collections such as CLEF or TREC.

4.4 Baselines
We implement the following baseline retrieval systems:
Non-Neural Baselines
– HQT-BM25 is a monolingual baseline run in the document lan-
guage, where the queries are human-generated translations of
the English queries into the document language and the doc-
uments are in their native language. Specifically, we perform
retrieval with the BM25 implementation [58] from the Anserini
toolkit [71] with Anserini’s default hyperparameters. We com-
pute the indexing time using Anserini run on 48 threads.

– PSQ-HMM uses Probabilistic Structured Queries (PSQ) [16], a
CLIR approach in which alternative term translations are used
to estimate query language (i.e., English) term counts for each
non-English document using translation probabilities for Eng-
lish terms given document-language terms. To obtain translation
probabilities, we combine results from three alignment tools:
GIZA++ [52], BerkeleyAligner [37], and Eflomal [53]. For each
language pair, we train each aligner using parallel sentences from
all sources listed in §4.2 except UNPC, and we also train on bilin-
gual Panlex dictionaries [29].12 We use the same preprocessing
for the bilingual corpora as for the queries and the document col-
lections: lowercasing tokens, removing punctuation and normal-
izing diacritics. We exclude translation probabilities of less than
1e-4 and then apply a cumulative distribution function threshold
of 0.97. Given a vector of term counts in a document language,
we generate a corresponding vector of English term counts at
indexing time and then build an index based on those English
counts. Note that this is an indexing-time implementation of the
query-time implementation proposed in the original PSQ paper.
The ranking is then performed using a Hidden Markov Model
(HMM) [68] implementation.

Document Translation (DT) CLIR Baselines
– DT-BM25 is a CLIR baseline run in the query language, where
queries are in English and documents are machine translations of
the text. The MT model is a 6-layer encoder/decoder transformer
stack implemented using Sockeye 2 [17, 25] trained on publicly
available bitext sources. Sockeye 2 has a decoding speed of 50 sen-
tences/sec, roughly amounting to 285 ms per document averaged
across the six document collections. Similar to HQT-BM25, we
perform retrieval using Anserini and compute the indexing time
by adding two factors: the time it takes to translate the documents
and the indexing time using Anserini run on 48 threads.

– DT-SPLADE is a CLIR system built by applying SPLADEv2
with English queries to documents that have been automatically
translated into English. We train a monolingual task-specific
SPLADE model, initialized with an uncased BERT-Base encoder,

11Besides MaxP, we experimented with aggregating passage weights using functions
including sum, max, and average to calculate document-level weights; however, each
of these aggregations yielded lower effectiveness than MaxP.
12We omit UNPC from the parallel corpora used to train PSQ because at 18M-30M sen-
tence pairs it is far larger than is needed to obtain stable term translation probabilities.

using the same fine-tuning recipe as BLADE with the original
MS MARCO triples. For a fair comparison with SPLADE-X and
BLADE training, no hard negative mining step described in the
original SPLADEv2 paper [20] was used. Our experiments on
the four CLEF languages show a 2% drop in MAP using our ver-
sion of the model compared to the publicly available SPLADEv2
checkpoint.13 Indexing time is the combination of translation
time, inference time per document to run the SPLADE model on
a single V100 GPU, and Anserini’s indexing time using 48 threads.

Other CLIR Baselines
– ColBERT-X [48] is a generalization of ColBERT [31] for CLIR.
This belongs to a family of multi-vector dense retrieval mod-
els, which are generally more effective than single-vector dense
retrieval models such as DPR [30]. ColBERT-X is a multi-stage
retrieval model. The first stage finds the documents most simi-
lar to the query terms using an approximate nearest neighbor
search. Then the second stage performs a MaxSim operation,
which computes a term-by-term interaction matrix between the
query and those documents. We use a ColBERT-X model initial-
ized with an XLM-R Large [11] multilingual encoder and adopt a
translate-train approach to fine-tune the model, using mMARCO
passage translations (as generated by Bonifacio et al. [8] using a
Marian MT model, referred to as Helsinki), each paired with an
untranslated English MS MARCO query. We index the overlap-
ping passages of 180 tokens with a stride of 90 using 8 V100 GPUs
and compute the final per-GPU indexing time by multiplying the
indexing time by the number of GPUs (8).

– SPLADE-X is the cross-language generalization of the SPLADE
model initialized with a multilingual BERT model. We reimple-
ment the translate-train version of SPLADE-X, primarily adher-
ing to the design choices outlined by Nair et al. [49].14

We also report results from system combinations, using Recip-
rocal Rank Fusion (RRF) [12]. Because system combination has
implications for both effectiveness and efficiency, this allows us to
explore a broader range of options in that trade space. For fusion
results, we report indexing time by summing the per-document
indexing times of individual systems.

5 RESULTS AND ANALYSIS
This section describes the results of the experiments conducted and
presents our analysis to answer the following research questions:
RQ1 How much improvement does the intermediate pretraining
step contribute to BLADE’s effectiveness?
RQ2 How does BLADE compare to CLIR baselines for retrieval
effectiveness?
RQ3 What is the relative indexing speed of different CLIRmethods?
RQ4 What is the trade-off of effectiveness and efficiency?
RQ5 Can we tune BLADE’s query expansion to better balance
retrieval effectiveness with query-time efficiency?

5.1 The Effect of Intermediate Pretraining
We analyze the effect of intermediate pretraining to answer RQ1
using results from Table 3. We start by comparing the sparse neural
13https://github.com/naver/splade/tree/main/weights/distilsplade_max
14Our key modification involves increasing the sequence length from 128 to 256 tokens.

https://github.com/naver/splade/tree/main/weights/distilsplade_max
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Table 3: MAP and R@100 for BLADE model variants for retrieving content in 6 languages using English title queries

CLEF 03 NeuCLIR 2022 AverageFrench Italian German Spanish Chinese Russian
Systems MAP R@100 MAP R@100 MAP R@100 MAP R@100 MAP R@100 MAP R@100 MAP R@100

SPLADE-X 0.402 0.771 0.355 0.676 0.340 0.580 0.332 0.578 0.218 0.436 0.270 0.422 0.320 0.577
vanilla BLADE 0.434 0.767 0.361 0.675 0.340 0.574 0.152 0.345 0.244 0.465 0.050 0.177 0.264 0.501

BLADE-S 0.437 0.774 0.359 0.680 0.368 0.606 0.385 0.609 0.266 0.487 0.242 0.454 0.343 0.602
BLADE-P 0.453 0.763 0.341 0.677 0.378 0.598 0.396 0.618 0.264 0.475 0.233 0.437 0.344 0.595
BLADE-C 0.448 0.783 0.389 0.730 0.386 0.634 0.387 0.640 0.248 0.453 0.243 0.429 0.350 0.612

models SPLADE-X and vanilla BLADE. Vanilla BLADE, which lacks
intermediate pretraining, is fine-tuned only on the task-specific
loss; it differs from SPLADE-X in that it uses bilingual Geotrend
embeddings rather than only query-language (English) embeddings
in the output space. SPLADE-X has a higher MAP and R@100 than
vanilla BLADE, on average across all test collections. Vanilla BLADE
performs very similarly to SPLADE-X in three CLEF languages,
French, Italian, and German, and numerically outperforms SPLADE-
X in NeuCLIR Chinese. The only statistically significant differences
are in Spanish and Russian, where using an off-the-shelf pruned
bilingual model leads to a drop in effectiveness, indicating that the
same fine-tuning process cannot achieve the desired output quality.

Now adding intermediate pretraining, we see BLADE-C (the best
of our BLADE models, on average) improving over SPLADE-X in
both MAP and R@100, averaging a 9% MAP improvement and a
6% R@100 improvement across all the languages. We similarly see
improvements for BLADE-P and BLADE-S over SPLADE-X. These
consistent differences indicate that intermediate pretraining and
extending the vocabulary from SPLADE-X’s query-language tokens
to include tokens from both the query and document languages is
beneficial. Intermediate pretraining on aligned passages accounts
for a part of this difference, but including document-language terms
is important, especially in Chinese. Most importantly, these gains
in effectiveness are achieved with a reduction in model size from
SPLADE-X to BLADE’s pruned bilingual model.

We see that pretraining on comparable passages (BLADE-C)
produces results broadly similar to training on parallel passages
(BLADE-P), with each yielding better MAP than the other on three
of the six languages. Only the improvement from using comparable
rather than parallel passages in Italian is statistically significant.
Similarly, we see that pretraining with parallel passages or parallel
sentences yields similar results, with each achieving numerically
better MAP than the other in three of the six languages; none of
the differences are statistically significant. We focus the remainder
of our analysis on BLADE-C for two reasons. First, BLADE-C’s
use of comparable passages offers greater potential for diversity
that can be beneficial when combined using RRF with results from
systems trained on parallel text (as all other systems are). Second,
BLADE-C attains a higher average MAP and R@100 across the six
languages compared to any other approach, establishing it as an
equally suitable choice, if not better, than the alternatives.

We observe that intermediate pretraining using comparable pas-
sages numerically improves the MAP of the BLADE-C model in
every language over the vanilla BLADE model. Compared to pre-
training with comparable text, MAP degrades without pretraining

by 25% on average. The reductions in MAP without pretraining
for Spanish and Russian are particularly large, suggesting that
the vanilla BLADE model for those languages may be less well-
tuned. To confirm this, we randomly selected a Spanish sentence,
replaced one of the original tokens with the [MASK] token, and
checked the output from different models, including off-the-shelf
mBERT/Geotrend and BLADE model variants. While the off-the-
shelf and the other BLADE model outputs look reasonable (related
terms or exact matches), vanilla BLADE outputs only punctuations.
A similar phenomenon is observed in the case of Russian. We find
this to be a case of representation degeneration [23], where the
vanilla BLADE model defaults to expanding to rogue dimensions
corresponding to those characters. Several solutions have been
proposed for this issue, which includes normalizing/whitening em-
beddings [62] or using a regularization step [56]. The design of
SPLADE-X avoids this issue, as it includes only alphanumeric char-
acters in its vocabulary. However, intermediate pretraining acts as
a form of regularization since we only update the LM head during
pretraining. The differences are statistically significant for both
MAP and R@100 in Spanish, where BLADE-C surpasses the effec-
tiveness of SPLADE-X, and not in Russian, where SPLADE-X has
numerically better MAP and R@100 than BLADE-C. This further
underscores the importance of intermediate pretraining.

5.2 Optimizing for Effectiveness
Table 4 shows MAP and Recall@100 (R@100) for different methods
across the six language pairs. Comparing the two non-neural base-
lines, we see PSQ-HMM performing comparably to HQT-BM25 on
average, with the average MAP across all six collections numeri-
cally equal and the average R@100 slightly favoring PSQ-HMM.
These broadly comparable results demonstrate that our PSQ-HMM
framework is a strong non-neural baseline, indicating that the term
expansion effect of using multiple translations in PSQ is (on aver-
age) sufficient to compensate for the more selective term choice of
human translators who generate only a single translation of each
query, which is then run without query expansion.

We have two CLIR baselines that rely on applying MT to ev-
ery document at indexing time: DT-BM25 and DT-SPLADE. This
is a computationally expensive approach, although it does have
the benefit (which none of our other CLIR approaches share) of
obviating the need to rapidly produce new translations when the
user wishes to see a translation. With just one exception (MAP for
Italian), DT-SPLADE yields numerically better retrieval effective-
ness than DT-BM25 by both MAP and R@100, although the MAP
difference is only significant for Russian, and the R@100 difference
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Table 4: MAP and Recall@100 for retrieving content in 6 languages using English title queries.

CLEF 03 NeuCLIR 2022 Average Indexing
French Italian German Spanish Chinese Russian Time per

Systems MAP R@100 MAP R@100 MAP R@100 MAP R@100 MAP R@100 MAP R@100 MAP R@100 doc (ms)

Non-Neural Baselines

HQT-BM25 0.406 0.737 0.387 0.720 0.296 0.485 0.431 0.695 0.183 0.431 0.281 0.428 0.331 0.583 0.29
PSQ-HMM 0.419 0.775 0.325 0.632 0.379 0.624 0.374 0.606 0.236 0.465 0.253 0.447 0.331 0.592 9.60

DT Baselines

DT-BM25 0.446 0.772 0.421 0.725 0.465 0.702 0.425 0.650 0.266 0.469 0.269 0.442 0.382 0.630 285.04
DT-SPLADE 0.486 0.846 0.418 0.731 0.476 0.756 0.448 0.670 0.310 0.576 0.353 0.552 0.415 0.689 317.61
+ PSQ-HMM 0.487 0.846 0.384 0.779 0.475 0.757 0.472 0.726 0.328 0.578 0.353 0.578 0.417 0.711 327.21

Other Neural Baselines

ColBERT-X 0.457 0.765 0.404 0.710 0.408 0.643 0.381 0.621 0.332 0.542 0.335 0.521 0.386 0.634 48.05
+ PSQ-HMM 0.496 0.826 0.413 0.750 0.465 0.696 0.439 0.710 0.363 0.594 0.360 0.574 0.423 0.692 57.65

BLADE Family

BLADE-C 0.448 0.783 0.389 0.730 0.386 0.634 0.387 0.640 0.248 0.453 0.243 0.429 0.350 0.612 42.59
+ PSQ-HMM 0.491 0.825 0.397 0.727 0.446 0.713 0.440 0.698 0.306 0.539 0.328 0.510 0.401 0.669 52.19
+ ColBERT-X + PSQ-HMM 0.516 0.835 0.442 0.779 0.487 0.747 0.466 0.719 0.377 0.598 0.382 0.585 0.445 0.709 100.24

is only significant for French, Chinese and Russian. The clear ad-
vantage of DT-SPLADE results from the lexical expansion for both
documents and queries. This is consistent with the reported results
for monolingual English applications of SPLADEv2, indicating that
the method is fairly robust to whatever errors MT might introduce.
Compared to the PSQ-HMM baseline, we see that DT-SPLADE is
numerically better for every language by both measures. Moreover,
these differences are statistically significant, except for MAP in
French and R@100 in Spanish. From this, we can conclude that
DT-SPLADE’s slower indexing time is indeed rewarded by better
retrieval effectiveness. Using RRF to combine DT-SPLADE and PSQ-
HMM results has little effect on MAP on average across the six
languages except Italian (the differences with DT-SPLADE are not
significant), but it sometimes helps (and, on average over the query
set, never hurts) R@100 for any language (only the gain in R@100
for Spanish and Italian are significant).

As a neural CLIR baseline that does not rely on using MT at
indexing time, we experiment with ColBERT-X. With just one ex-
ception (R@100 for French), ColBERT-X consistently numerically
outperforms the PSQ-HMM baseline by both MAP and R@100, al-
though those improvements are significant (by both measures) only
in Italian, Chinese, and Russian. In particular, the ColBERT MaxSim
heuristic allows each query term and its matching (most similar)
document term to have different representations, thus achieving
greater representational fidelity than the lexical match-based PSQ-
HMM approach. Using RRF to combine ColBERT-X with PSQ-HMM
consistently results in further improvement over ColBERT-X alone
for every language by both measures; the improvements are statis-
tically significant by R@100 in every case and by MAP for German
and Spanish. From this, we conclude that among techniques that are
more efficient at indexing time than those that require running MT
on every document, ColBERT-X + PSQ-HMM is a strong baseline.
Moreover, the numerical effectiveness of this combination is within
4% of DT-SPLADE + PSQ-HMM on average across the six languages

(slightly better for MAP, slightly worse for R@100), indicating that
the substantially better indexing-time efficiency of ColBERT-X +
PSQ-HMM can be achieved at little cost in effectiveness.

Having established baselines, we now answer RQ2. Looking
first at single systems, we observe that, on average, across six lan-
guages, BLADE-C numerically outperforms PSQ-HMM by both
MAP and R@100; the differences are only significant (by both mea-
sures) for Italian. DT-SPLADE achieves numerically higher MAP
and R@100 than BLADE-C in every language, although that im-
provement comes at a large indexing time cost. We attribute the
better performance of DT-SPLADE to its even smaller language
model (covering one language rather than two), the cleaner fine-
tuning from English MS MARCO without translationese, and the
MT system leveraging a target language model. The picture is a
bit more mixed for ColBERT-X, which numerically outperforms
BLADE-C on five of the six languages by MAP (Spanish being the
exception), but only three of six languages (German, Chinese, and
Russian) by R@100. Differences between COLBERT-X and BLADE-
C are significant (by each measure) only for Chinese and Russian,

Using RRF to combine results from efficient systems, it is pos-
sible to substantially improve over the effectiveness of any of the
constituent systems. BLADE-C and PSQ-HMM are clearly comple-
mentary, with significant improvements over BLADE-C alone for
five of the six languages by MAP (Italian is the exception) and for all
six languages by R@100. Moreover, combining BLADE-C, ColBERT-
X, and PSQ-HMM yields further improvement. That combination
numerically outperforms every other system or system combina-
tion, including the combination of DT-SPLADE with PSQ-HMM,
on five of the six languages by MAP (Spanish is the exception)
and on three of the six languages by R@100. In almost all cases, a
3-system combination is better than the base individual systems,
with significant differences for MAP and R@100. In aggregate, com-
bining BLADE-C, ColBERT-X, and PSQ-HMM yields an average 7%
improvement (across six languages) over DT-SPLADE + PSQ-HMM
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Figure 2: Indexing Efficiency vs. MAP for six collections using English queries.

by MAP with significant differences in Italian and Chinese while
yielding comparable values (within 1%) for R@100 with no signifi-
cant differences between the two. As we show below, these strong
results can be achieved at a fraction of DT-SPLADE’s indexing cost.

5.3 Optimizing for Indexing Efficiency
To this point, we have described efficiency qualitatively as being
faster or slower. Here, we quantify efficiency differences, illustrating
the tradeoff between efficient indexing and effective retrieval to
answer RQ3. We operationalize efficiency at indexing time as the
time (in milliseconds) to perform any necessary translation, run
any needed model inference, and index the documents. PSQ-HMM
has the fastest indexing speed since our implementation requires
only the multiplication of a (translation probability) matrix and a
(document term count) vector that generates a vector (of estimated
English term counts). Our present PSQ-HMM implementation is
CPU-based, and we could surely make it faster with a GPU-based
implementation, which we leave for future work.

BLADE-C is the next fastest method, averaging slightly faster
than ColBERT-X (42.6 vs. 48.1ms). One factor that helps BLADE-C is
the smaller bilingual model compared to the larger XLM-RoBERTa
encoder used by ColBERT-X. In this case, averages hide some sys-
tematic variation, as the situation is reversed for Chinese and Rus-
sian, with ColBERT-X indexing at speeds comparable to BLADE.We
attribute that to the difference in maximum input sequence length
for the two models. The maximum sequence length for ColBERT-X
is 180, as opposed to 256 for BLADE. As the collection size grows,
we see an inflection point given the 𝑂 (𝑛2) time complexity of the
self-attention in transformer layers. As Table 1 shows, the Neu-
CLIR collections for Chinese and Russian are an order of magnitude
larger than a typical CLEF collection.

BLADE and ColBERT-X are much faster than DT-SPLADE (by a
factor of 7.5 on average for BLADE, 6.6 for ColBERT-X). This is pri-
marily because DT-SPLADE’s inference time includes three costs: a)

translating documents to the query language, b) running monolin-
gual SPLADE on the translated texts, and c) indexing the SPLADE
vectors using Anserini. The average inference time for monolingual
SPLADE inference is slightly lower than that of BLADE due to
SPLADE’s monolingual BERT encoder having fewer parameters
than BLADE’s bilingual encoder. Moreover, the ratio of subwords
in a bilingual model is higher than in a monolingual model, which
also impacts the inference time. For the RRF system combination,
indexing times are additive because each model has a different in-
dex. Our three-system combination (BLADE-C, ColBERT-X, and
PSQ-HMM) is, on average, 3 times faster than DT-SPLADE.

5.4 Balancing Effectiveness and Efficiency
To investigate RQ4, we illustrate the tradeoff between effective-
ness and efficiency using MAP. Use of R@100 yields similar results.
Figure 2 shows this tradeoff for each language, and Figure 1 summa-
rizes those plots using averages across all six languages. The best
outcome would be in the upper left corner of those figures, where
the system achieves both fast indexing and high effectiveness. In
practice, the Pareto frontier is the curve that identifies the best ef-
fectiveness achieved at (or faster than) any specified indexing speed.
As shown in Figure 2, PSQ-HMM and the 3-system RRF combina-
tion of BLADE-C, ColBERT-X, and PSQ+HMM are all on the Pareto
frontier for each of the six languages. The 2-system combination of
BLADE-C with PSQ-HMM is on the frontier for French, German
and Spanish, and the 2-system combination of ColBERT-X with
PSQ-HMM are on the frontier for the other three languages. The
most striking point, however, is that DT-SPLADE alone is nowhere
near the Pareto frontier in any language. Said another way, when
indexing time matters, DT-SPLADE alone is never the best choice.
A 4-system combination that includes DT-SPLADE with BLADE-C,
ColBERT-X, and PSQ-HMM is also on the frontier, but the improve-
ment in effectiveness over a 3-system combination is small relative
to the additional cost in indexing time.
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Figure 3: Average Query Latency vs MAP for BLADE-C model on the CLEF-03 and NeuCLIR collections using English queries
with k ranging from 10..100 in intervals of 10. ★ denotes the BLADE-C model run with default k (1% of vocabulary size)

5.5 Query Latency
In a lexical expansion framework, query latency is affected by the
number of terms in the expanded query. The experiments above set
𝑘 to 1% of total vocabulary, which ranges from 330 to 380. Such val-
ues pose nearly no constraint on tokens output by BLADE, which
usually outputs less than 100. However, the number of tokens af-
fects query latency. Enforcing a tighter constraint on the output
tokens trades between effectiveness and query latency. We vary
𝑘 from 10 to 100 and plot the Pareto frontier of MAP and average
query latency in Figure 3. We use PISA [45] on an AMD EPYC
7713 64-core processor with 256 GB CPU RAM to measure time to
retrieve passages for a query set using BLADE-C.15 We use PISA’s
multi-threaded processing with 32 threads to retrieve the top 10,000
passages for each query concurrently. With this large number of
passages to retrieve, we use the MaxScore [65] dynamic pruning
algorithm, as it has been shown to work well in such settings [46].

For French and Italian, with fewer than 1M passages, we see
query latency between 1 and 3 ms, and stronger sparsity constraints
(smaller 𝑘) provide the best effectiveness/efficiency trade-off. Larger
𝑘 values (points without numbers) are sometimes far from the
Pareto frontier. For German and Spanish, with between 1M and
2M passages, we have longer query latency, between 2 and 12 ms.
Again, we can achieve almost the same MAP with lower values of 𝑘
than the unconstrained case (1% of the vocabulary). For Chinese and
Russian, with between 18M and 21M passages, we see considerably
higher query latency, between 50 and 200 ms. For large collections,
allowing more tokens to be output by BLADE (larger 𝑘) contributes
more to effectiveness than for smaller collections. To answer RQ5,
we believe 𝑘 can be better tuned to collection size. Larger collections
benefit from more distinguishing power between documents, so
allowing more tokens benefits retrieval more.

15We do not include the time it takes to rank documents from passage rankings, as
that is done in memory and is thus fast relative to retrieval.

6 CONCLUSION AND FUTUREWORK
This paper introduces BLADE, a sparse lexical expansion model
for CLIR using a bilingual encoder. Our experiments using English
queries to search six other languages show that task-specific in-
termediate pretraining is helpful, although the relative benefit of
parallel or comparable text, or sentences or passages, is less clear.
Experimentation with state-of-the-art models shows that BLADE
yields substantially better results than SPLADE-X, and that BLADE
contributes complementary evidence to system combinations with
techniques that are also efficient at indexing time. These system
combinations result in Pareto optimal tradeoffs between retrieval
effectiveness and indexing efficiency for each of our test collec-
tions. On average, 95% of the best presently achievable MAP can be
achieved with a factor of four improvements in indexing speed, and
both 4-system and 3-system combinations benefit from BLADE.

These results open several lines for future research. We have
shown that query latency can be reduced with little effect on ef-
fectiveness by limiting query expansion. If similar reductions were
made to expansion of indexed passages, indexing time could be fur-
ther accelerated. ColBERT techniques for CLIR have diverged some-
what from monolingual practice, with substantial improvements
to monolingual ColBERT’s efficiency (first as ColBERTv2 [60], and
then as PLAID [59]) that have yet to be applied for CLIR. Given
the role of ColBERT-X (which is based on the original ColBERT) in
Pareto optimal system combinations, work on efficient ColBERT
implementations for CLIR is clearly called for. Our experiments
highlight the importance of late fusion for achieving a Pareto opti-
mal tradeoff between indexing efficiency and retrieval effectiveness,
but we note that if the term segmentations were aligned, the query-
language vocabulary of Probabilistic Structured Queries would be
a subset of the bilingual BLADE vocabulary. This opens the op-
tion of early fusion [13, 47], which could result in further gains in
efficiency, effectiveness, or both.
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